tokio/sync/rwlock/
owned_write_guard_mapped.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
use crate::sync::rwlock::RwLock;
use std::marker::PhantomData;
use std::sync::Arc;
use std::{fmt, mem, ops, ptr};

/// Owned RAII structure used to release the exclusive write access of a lock when
/// dropped.
///
/// This structure is created by [mapping] an [`OwnedRwLockWriteGuard`]. It is a
/// separate type from `OwnedRwLockWriteGuard` to disallow downgrading a mapped
/// guard, since doing so can cause undefined behavior.
///
/// [mapping]: method@crate::sync::OwnedRwLockWriteGuard::map
/// [`OwnedRwLockWriteGuard`]: struct@crate::sync::OwnedRwLockWriteGuard
#[clippy::has_significant_drop]
pub struct OwnedRwLockMappedWriteGuard<T: ?Sized, U: ?Sized = T> {
    // When changing the fields in this struct, make sure to update the
    // `skip_drop` method.
    #[cfg(all(tokio_unstable, feature = "tracing"))]
    pub(super) resource_span: tracing::Span,
    pub(super) permits_acquired: u32,
    pub(super) lock: Arc<RwLock<T>>,
    pub(super) data: *mut U,
    pub(super) _p: PhantomData<T>,
}

#[allow(dead_code)] // Unused fields are still used in Drop.
struct Inner<T: ?Sized, U: ?Sized> {
    #[cfg(all(tokio_unstable, feature = "tracing"))]
    resource_span: tracing::Span,
    permits_acquired: u32,
    lock: Arc<RwLock<T>>,
    data: *const U,
}

impl<T: ?Sized, U: ?Sized> OwnedRwLockMappedWriteGuard<T, U> {
    fn skip_drop(self) -> Inner<T, U> {
        let me = mem::ManuallyDrop::new(self);
        // SAFETY: This duplicates the values in every field of the guard, then
        // forgets the originals, so in the end no value is duplicated.
        unsafe {
            Inner {
                #[cfg(all(tokio_unstable, feature = "tracing"))]
                resource_span: ptr::read(&me.resource_span),
                permits_acquired: me.permits_acquired,
                lock: ptr::read(&me.lock),
                data: me.data,
            }
        }
    }

    /// Makes a new `OwnedRwLockMappedWriteGuard` for a component of the locked
    /// data.
    ///
    /// This operation cannot fail as the `OwnedRwLockMappedWriteGuard` passed
    /// in already locked the data.
    ///
    /// This is an associated function that needs to be used as
    /// `OwnedRwLockWriteGuard::map(..)`. A method would interfere with methods
    /// of the same name on the contents of the locked data.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::Arc;
    /// use tokio::sync::{RwLock, OwnedRwLockWriteGuard};
    ///
    /// #[derive(Debug, Clone, Copy, PartialEq, Eq)]
    /// struct Foo(u32);
    ///
    /// # #[tokio::main]
    /// # async fn main() {
    /// let lock = Arc::new(RwLock::new(Foo(1)));
    ///
    /// {
    ///     let lock = Arc::clone(&lock);
    ///     let mut mapped = OwnedRwLockWriteGuard::map(lock.write_owned().await, |f| &mut f.0);
    ///     *mapped = 2;
    /// }
    ///
    /// assert_eq!(Foo(2), *lock.read().await);
    /// # }
    /// ```
    #[inline]
    pub fn map<F, V: ?Sized>(mut this: Self, f: F) -> OwnedRwLockMappedWriteGuard<T, V>
    where
        F: FnOnce(&mut U) -> &mut V,
    {
        let data = f(&mut *this) as *mut V;
        let this = this.skip_drop();

        OwnedRwLockMappedWriteGuard {
            permits_acquired: this.permits_acquired,
            lock: this.lock,
            data,
            _p: PhantomData,
            #[cfg(all(tokio_unstable, feature = "tracing"))]
            resource_span: this.resource_span,
        }
    }

    /// Attempts to make a new `OwnedRwLockMappedWriteGuard` for a component
    /// of the locked data. The original guard is returned if the closure
    /// returns `None`.
    ///
    /// This operation cannot fail as the `OwnedRwLockMappedWriteGuard` passed
    /// in already locked the data.
    ///
    /// This is an associated function that needs to be
    /// used as `OwnedRwLockMappedWriteGuard::try_map(...)`. A method would interfere with
    /// methods of the same name on the contents of the locked data.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::Arc;
    /// use tokio::sync::{RwLock, OwnedRwLockWriteGuard};
    ///
    /// #[derive(Debug, Clone, Copy, PartialEq, Eq)]
    /// struct Foo(u32);
    ///
    /// # #[tokio::main]
    /// # async fn main() {
    /// let lock = Arc::new(RwLock::new(Foo(1)));
    ///
    /// {
    ///     let guard = Arc::clone(&lock).write_owned().await;
    ///     let mut guard = OwnedRwLockWriteGuard::try_map(guard, |f| Some(&mut f.0)).expect("should not fail");
    ///     *guard = 2;
    /// }
    ///
    /// assert_eq!(Foo(2), *lock.read().await);
    /// # }
    /// ```
    #[inline]
    pub fn try_map<F, V: ?Sized>(
        mut this: Self,
        f: F,
    ) -> Result<OwnedRwLockMappedWriteGuard<T, V>, Self>
    where
        F: FnOnce(&mut U) -> Option<&mut V>,
    {
        let data = match f(&mut *this) {
            Some(data) => data as *mut V,
            None => return Err(this),
        };
        let this = this.skip_drop();

        Ok(OwnedRwLockMappedWriteGuard {
            permits_acquired: this.permits_acquired,
            lock: this.lock,
            data,
            _p: PhantomData,
            #[cfg(all(tokio_unstable, feature = "tracing"))]
            resource_span: this.resource_span,
        })
    }

    /// Returns a reference to the original `Arc<RwLock>`.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::Arc;
    /// use tokio::sync::{
    ///     RwLock,
    ///     OwnedRwLockWriteGuard,
    ///     OwnedRwLockMappedWriteGuard,
    /// };
    ///
    /// # #[tokio::main]
    /// # async fn main() {
    /// let lock = Arc::new(RwLock::new(1));
    ///
    /// let guard = lock.clone().write_owned().await;
    /// let guard = OwnedRwLockWriteGuard::map(guard, |x| x);
    /// assert!(Arc::ptr_eq(&lock, OwnedRwLockMappedWriteGuard::rwlock(&guard)));
    /// # }
    /// ```
    pub fn rwlock(this: &Self) -> &Arc<RwLock<T>> {
        &this.lock
    }
}

impl<T: ?Sized, U: ?Sized> ops::Deref for OwnedRwLockMappedWriteGuard<T, U> {
    type Target = U;

    fn deref(&self) -> &U {
        unsafe { &*self.data }
    }
}

impl<T: ?Sized, U: ?Sized> ops::DerefMut for OwnedRwLockMappedWriteGuard<T, U> {
    fn deref_mut(&mut self) -> &mut U {
        unsafe { &mut *self.data }
    }
}

impl<T: ?Sized, U: ?Sized> fmt::Debug for OwnedRwLockMappedWriteGuard<T, U>
where
    U: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

impl<T: ?Sized, U: ?Sized> fmt::Display for OwnedRwLockMappedWriteGuard<T, U>
where
    U: fmt::Display,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Display::fmt(&**self, f)
    }
}

impl<T: ?Sized, U: ?Sized> Drop for OwnedRwLockMappedWriteGuard<T, U> {
    fn drop(&mut self) {
        self.lock.s.release(self.permits_acquired as usize);

        #[cfg(all(tokio_unstable, feature = "tracing"))]
        self.resource_span.in_scope(|| {
            tracing::trace!(
            target: "runtime::resource::state_update",
            write_locked = false,
            write_locked.op = "override",
            )
        });
    }
}