curve25519_dalek/
montgomery.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
// -*- mode: rust; -*-
//
// This file is part of curve25519-dalek.
// Copyright (c) 2016-2021 isis lovecruft
// Copyright (c) 2016-2019 Henry de Valence
// See LICENSE for licensing information.
//
// Authors:
// - isis agora lovecruft <isis@patternsinthevoid.net>
// - Henry de Valence <hdevalence@hdevalence.ca>

//! Scalar multiplication on the Montgomery form of Curve25519.
//!
//! To avoid notational confusion with the Edwards code, we use
//! variables \\( u, v \\) for the Montgomery curve, so that “Montgomery
//! \\(u\\)” here corresponds to “Montgomery \\(x\\)” elsewhere.
//!
//! Montgomery arithmetic works not on the curve itself, but on the
//! \\(u\\)-line, which discards sign information and unifies the curve
//! and its quadratic twist.  See [_Montgomery curves and their
//! arithmetic_][costello-smith] by Costello and Smith for more details.
//!
//! The `MontgomeryPoint` struct contains the affine \\(u\\)-coordinate
//! \\(u\_0(P)\\) of a point \\(P\\) on either the curve or the twist.
//! Here the map \\(u\_0 : \mathcal M \rightarrow \mathbb F\_p \\) is
//! defined by \\(u\_0((u,v)) = u\\); \\(u\_0(\mathcal O) = 0\\).  See
//! section 5.4 of Costello-Smith for more details.
//!
//! # Scalar Multiplication
//!
//! Scalar multiplication on `MontgomeryPoint`s is provided by the `*`
//! operator, which implements the Montgomery ladder.
//!
//! # Edwards Conversion
//!
//! The \\(2\\)-to-\\(1\\) map from the Edwards model to the Montgomery
//! \\(u\\)-line is provided by `EdwardsPoint::to_montgomery()`.
//!
//! To lift a `MontgomeryPoint` to an `EdwardsPoint`, use
//! `MontgomeryPoint::to_edwards()`, which takes a sign parameter.
//! This function rejects `MontgomeryPoints` which correspond to points
//! on the twist.
//!
//! [costello-smith]: https://eprint.iacr.org/2017/212.pdf

// We allow non snake_case names because coordinates in projective space are
// traditionally denoted by the capitalisation of their respective
// counterparts in affine space.  Yeah, you heard me, rustc, I'm gonna have my
// affine and projective cakes and eat both of them too.
#![allow(non_snake_case)]

use core::{
    hash::{Hash, Hasher},
    ops::{Mul, MulAssign},
};

use crate::constants::{APLUS2_OVER_FOUR, MONTGOMERY_A, MONTGOMERY_A_NEG};
use crate::edwards::{CompressedEdwardsY, EdwardsPoint};
use crate::field::FieldElement;
use crate::scalar::{clamp_integer, Scalar};

use crate::traits::Identity;

use subtle::Choice;
use subtle::ConstantTimeEq;
use subtle::{ConditionallyNegatable, ConditionallySelectable};

#[cfg(feature = "zeroize")]
use zeroize::Zeroize;

/// Holds the \\(u\\)-coordinate of a point on the Montgomery form of
/// Curve25519 or its twist.
#[derive(Copy, Clone, Debug, Default)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct MontgomeryPoint(pub [u8; 32]);

/// Equality of `MontgomeryPoint`s is defined mod p.
impl ConstantTimeEq for MontgomeryPoint {
    fn ct_eq(&self, other: &MontgomeryPoint) -> Choice {
        let self_fe = FieldElement::from_bytes(&self.0);
        let other_fe = FieldElement::from_bytes(&other.0);

        self_fe.ct_eq(&other_fe)
    }
}

impl PartialEq for MontgomeryPoint {
    fn eq(&self, other: &MontgomeryPoint) -> bool {
        self.ct_eq(other).into()
    }
}

impl Eq for MontgomeryPoint {}

// Equal MontgomeryPoints must hash to the same value. So we have to get them into a canonical
// encoding first
impl Hash for MontgomeryPoint {
    fn hash<H: Hasher>(&self, state: &mut H) {
        // Do a round trip through a `FieldElement`. `as_bytes` is guaranteed to give a canonical
        // 32-byte encoding
        let canonical_bytes = FieldElement::from_bytes(&self.0).as_bytes();
        canonical_bytes.hash(state);
    }
}

impl Identity for MontgomeryPoint {
    /// Return the group identity element, which has order 4.
    fn identity() -> MontgomeryPoint {
        MontgomeryPoint([0u8; 32])
    }
}

#[cfg(feature = "zeroize")]
impl Zeroize for MontgomeryPoint {
    fn zeroize(&mut self) {
        self.0.zeroize();
    }
}

impl MontgomeryPoint {
    /// Fixed-base scalar multiplication (i.e. multiplication by the base point).
    pub fn mul_base(scalar: &Scalar) -> Self {
        EdwardsPoint::mul_base(scalar).to_montgomery()
    }

    /// Multiply this point by `clamp_integer(bytes)`. For a description of clamping, see
    /// [`clamp_integer`].
    pub fn mul_clamped(self, bytes: [u8; 32]) -> Self {
        // We have to construct a Scalar that is not reduced mod l, which breaks scalar invariant
        // #2. But #2 is not necessary for correctness of variable-base multiplication. All that
        // needs to hold is invariant #1, i.e., the scalar is less than 2^255. This is guaranteed
        // by clamping.
        // Further, we don't do any reduction or arithmetic with this clamped value, so there's no
        // issues arising from the fact that the curve point is not necessarily in the prime-order
        // subgroup.
        let s = Scalar {
            bytes: clamp_integer(bytes),
        };
        s * self
    }

    /// Multiply the basepoint by `clamp_integer(bytes)`. For a description of clamping, see
    /// [`clamp_integer`].
    pub fn mul_base_clamped(bytes: [u8; 32]) -> Self {
        // See reasoning in Self::mul_clamped why it is OK to make an unreduced Scalar here. We
        // note that fixed-base multiplication is also defined for all values of `bytes` less than
        // 2^255.
        let s = Scalar {
            bytes: clamp_integer(bytes),
        };
        Self::mul_base(&s)
    }

    /// Given `self` \\( = u\_0(P) \\), and a big-endian bit representation of an integer
    /// \\(n\\), return \\( u\_0(\[n\]P) \\). This is constant time in the length of `bits`.
    ///
    /// **NOTE:** You probably do not want to use this function. Almost every protocol built on
    /// Curve25519 uses _clamped multiplication_, explained
    /// [here](https://neilmadden.blog/2020/05/28/whats-the-curve25519-clamping-all-about/).
    /// When in doubt, use [`Self::mul_clamped`].
    pub fn mul_bits_be(&self, bits: impl Iterator<Item = bool>) -> MontgomeryPoint {
        // Algorithm 8 of Costello-Smith 2017
        let affine_u = FieldElement::from_bytes(&self.0);
        let mut x0 = ProjectivePoint::identity();
        let mut x1 = ProjectivePoint {
            U: affine_u,
            W: FieldElement::ONE,
        };

        // Go through the bits from most to least significant, using a sliding window of 2
        let mut prev_bit = false;
        for cur_bit in bits {
            let choice: u8 = (prev_bit ^ cur_bit) as u8;

            debug_assert!(choice == 0 || choice == 1);

            ProjectivePoint::conditional_swap(&mut x0, &mut x1, choice.into());
            differential_add_and_double(&mut x0, &mut x1, &affine_u);

            prev_bit = cur_bit;
        }
        // The final value of prev_bit above is scalar.bits()[0], i.e., the LSB of scalar
        ProjectivePoint::conditional_swap(&mut x0, &mut x1, Choice::from(prev_bit as u8));
        // Don't leave the bit in the stack
        #[cfg(feature = "zeroize")]
        prev_bit.zeroize();

        x0.as_affine()
    }

    /// View this `MontgomeryPoint` as an array of bytes.
    pub const fn as_bytes(&self) -> &[u8; 32] {
        &self.0
    }

    /// Convert this `MontgomeryPoint` to an array of bytes.
    pub const fn to_bytes(&self) -> [u8; 32] {
        self.0
    }

    /// Attempt to convert to an `EdwardsPoint`, using the supplied
    /// choice of sign for the `EdwardsPoint`.
    ///
    /// # Inputs
    ///
    /// * `sign`: a `u8` donating the desired sign of the resulting
    ///   `EdwardsPoint`.  `0` denotes positive and `1` negative.
    ///
    /// # Return
    ///
    /// * `Some(EdwardsPoint)` if `self` is the \\(u\\)-coordinate of a
    /// point on (the Montgomery form of) Curve25519;
    ///
    /// * `None` if `self` is the \\(u\\)-coordinate of a point on the
    /// twist of (the Montgomery form of) Curve25519;
    ///
    pub fn to_edwards(&self, sign: u8) -> Option<EdwardsPoint> {
        // To decompress the Montgomery u coordinate to an
        // `EdwardsPoint`, we apply the birational map to obtain the
        // Edwards y coordinate, then do Edwards decompression.
        //
        // The birational map is y = (u-1)/(u+1).
        //
        // The exceptional points are the zeros of the denominator,
        // i.e., u = -1.
        //
        // But when u = -1, v^2 = u*(u^2+486662*u+1) = 486660.
        //
        // Since this is nonsquare mod p, u = -1 corresponds to a point
        // on the twist, not the curve, so we can reject it early.

        let u = FieldElement::from_bytes(&self.0);

        if u == FieldElement::MINUS_ONE {
            return None;
        }

        let one = FieldElement::ONE;

        let y = &(&u - &one) * &(&u + &one).invert();

        let mut y_bytes = y.as_bytes();
        y_bytes[31] ^= sign << 7;

        CompressedEdwardsY(y_bytes).decompress()
    }
}

/// Perform the Elligator2 mapping to a Montgomery point.
///
/// See <https://tools.ietf.org/html/draft-irtf-cfrg-hash-to-curve-10#section-6.7.1>
//
// TODO Determine how much of the hash-to-group API should be exposed after the CFRG
//      draft gets into a more polished/accepted state.
#[allow(unused)]
pub(crate) fn elligator_encode(r_0: &FieldElement) -> MontgomeryPoint {
    let one = FieldElement::ONE;
    let d_1 = &one + &r_0.square2(); /* 2r^2 */

    let d = &MONTGOMERY_A_NEG * &(d_1.invert()); /* A/(1+2r^2) */

    let d_sq = &d.square();
    let au = &MONTGOMERY_A * &d;

    let inner = &(d_sq + &au) + &one;
    let eps = &d * &inner; /* eps = d^3 + Ad^2 + d */

    let (eps_is_sq, _eps) = FieldElement::sqrt_ratio_i(&eps, &one);

    let zero = FieldElement::ZERO;
    let Atemp = FieldElement::conditional_select(&MONTGOMERY_A, &zero, eps_is_sq); /* 0, or A if nonsquare*/
    let mut u = &d + &Atemp; /* d, or d+A if nonsquare */
    u.conditional_negate(!eps_is_sq); /* d, or -d-A if nonsquare */

    MontgomeryPoint(u.as_bytes())
}

/// A `ProjectivePoint` holds a point on the projective line
/// \\( \mathbb P(\mathbb F\_p) \\), which we identify with the Kummer
/// line of the Montgomery curve.
#[derive(Copy, Clone, Debug)]
struct ProjectivePoint {
    pub U: FieldElement,
    pub W: FieldElement,
}

impl Identity for ProjectivePoint {
    fn identity() -> ProjectivePoint {
        ProjectivePoint {
            U: FieldElement::ONE,
            W: FieldElement::ZERO,
        }
    }
}

impl Default for ProjectivePoint {
    fn default() -> ProjectivePoint {
        ProjectivePoint::identity()
    }
}

impl ConditionallySelectable for ProjectivePoint {
    fn conditional_select(
        a: &ProjectivePoint,
        b: &ProjectivePoint,
        choice: Choice,
    ) -> ProjectivePoint {
        ProjectivePoint {
            U: FieldElement::conditional_select(&a.U, &b.U, choice),
            W: FieldElement::conditional_select(&a.W, &b.W, choice),
        }
    }
}

impl ProjectivePoint {
    /// Dehomogenize this point to affine coordinates.
    ///
    /// # Return
    ///
    /// * \\( u = U / W \\) if \\( W \neq 0 \\);
    /// * \\( 0 \\) if \\( W \eq 0 \\);
    pub fn as_affine(&self) -> MontgomeryPoint {
        let u = &self.U * &self.W.invert();
        MontgomeryPoint(u.as_bytes())
    }
}

/// Perform the double-and-add step of the Montgomery ladder.
///
/// Given projective points
/// \\( (U\_P : W\_P) = u(P) \\),
/// \\( (U\_Q : W\_Q) = u(Q) \\),
/// and the affine difference
/// \\(      u\_{P-Q} = u(P-Q) \\), set
/// $$
///     (U\_P : W\_P) \gets u(\[2\]P)
/// $$
/// and
/// $$
///     (U\_Q : W\_Q) \gets u(P + Q).
/// $$
#[rustfmt::skip] // keep alignment of explanatory comments
fn differential_add_and_double(
    P: &mut ProjectivePoint,
    Q: &mut ProjectivePoint,
    affine_PmQ: &FieldElement,
) {
    let t0 = &P.U + &P.W;
    let t1 = &P.U - &P.W;
    let t2 = &Q.U + &Q.W;
    let t3 = &Q.U - &Q.W;

    let t4 = t0.square();   // (U_P + W_P)^2 = U_P^2 + 2 U_P W_P + W_P^2
    let t5 = t1.square();   // (U_P - W_P)^2 = U_P^2 - 2 U_P W_P + W_P^2

    let t6 = &t4 - &t5;     // 4 U_P W_P

    let t7 = &t0 * &t3;     // (U_P + W_P) (U_Q - W_Q) = U_P U_Q + W_P U_Q - U_P W_Q - W_P W_Q
    let t8 = &t1 * &t2;     // (U_P - W_P) (U_Q + W_Q) = U_P U_Q - W_P U_Q + U_P W_Q - W_P W_Q

    let t9  = &t7 + &t8;    // 2 (U_P U_Q - W_P W_Q)
    let t10 = &t7 - &t8;    // 2 (W_P U_Q - U_P W_Q)

    let t11 =  t9.square(); // 4 (U_P U_Q - W_P W_Q)^2
    let t12 = t10.square(); // 4 (W_P U_Q - U_P W_Q)^2

    let t13 = &APLUS2_OVER_FOUR * &t6; // (A + 2) U_P U_Q

    let t14 = &t4 * &t5;    // ((U_P + W_P)(U_P - W_P))^2 = (U_P^2 - W_P^2)^2
    let t15 = &t13 + &t5;   // (U_P - W_P)^2 + (A + 2) U_P W_P

    let t16 = &t6 * &t15;   // 4 (U_P W_P) ((U_P - W_P)^2 + (A + 2) U_P W_P)

    let t17 = affine_PmQ * &t12; // U_D * 4 (W_P U_Q - U_P W_Q)^2
    let t18 = t11;               // W_D * 4 (U_P U_Q - W_P W_Q)^2

    P.U = t14;  // U_{P'} = (U_P + W_P)^2 (U_P - W_P)^2
    P.W = t16;  // W_{P'} = (4 U_P W_P) ((U_P - W_P)^2 + ((A + 2)/4) 4 U_P W_P)
    Q.U = t18;  // U_{Q'} = W_D * 4 (U_P U_Q - W_P W_Q)^2
    Q.W = t17;  // W_{Q'} = U_D * 4 (W_P U_Q - U_P W_Q)^2
}

define_mul_assign_variants!(LHS = MontgomeryPoint, RHS = Scalar);

define_mul_variants!(
    LHS = MontgomeryPoint,
    RHS = Scalar,
    Output = MontgomeryPoint
);
define_mul_variants!(
    LHS = Scalar,
    RHS = MontgomeryPoint,
    Output = MontgomeryPoint
);

/// Multiply this `MontgomeryPoint` by a `Scalar`.
impl Mul<&Scalar> for &MontgomeryPoint {
    type Output = MontgomeryPoint;

    /// Given `self` \\( = u\_0(P) \\), and a `Scalar` \\(n\\), return \\( u\_0(\[n\]P) \\)
    fn mul(self, scalar: &Scalar) -> MontgomeryPoint {
        // We multiply by the integer representation of the given Scalar. By scalar invariant #1,
        // the MSB is 0, so we can skip it.
        self.mul_bits_be(scalar.bits_le().rev().skip(1))
    }
}

impl MulAssign<&Scalar> for MontgomeryPoint {
    fn mul_assign(&mut self, scalar: &Scalar) {
        *self = (self as &MontgomeryPoint) * scalar;
    }
}

impl Mul<&MontgomeryPoint> for &Scalar {
    type Output = MontgomeryPoint;

    fn mul(self, point: &MontgomeryPoint) -> MontgomeryPoint {
        point * self
    }
}

// ------------------------------------------------------------------------
// Tests
// ------------------------------------------------------------------------

#[cfg(test)]
mod test {
    use super::*;
    use crate::constants;

    #[cfg(feature = "alloc")]
    use alloc::vec::Vec;

    use rand_core::{CryptoRng, RngCore};

    #[test]
    fn identity_in_different_coordinates() {
        let id_projective = ProjectivePoint::identity();
        let id_montgomery = id_projective.as_affine();

        assert!(id_montgomery == MontgomeryPoint::identity());
    }

    #[test]
    fn identity_in_different_models() {
        assert!(EdwardsPoint::identity().to_montgomery() == MontgomeryPoint::identity());
    }

    #[test]
    #[cfg(feature = "serde")]
    fn serde_bincode_basepoint_roundtrip() {
        use bincode;

        let encoded = bincode::serialize(&constants::X25519_BASEPOINT).unwrap();
        let decoded: MontgomeryPoint = bincode::deserialize(&encoded).unwrap();

        assert_eq!(encoded.len(), 32);
        assert_eq!(decoded, constants::X25519_BASEPOINT);

        let raw_bytes = constants::X25519_BASEPOINT.as_bytes();
        let bp: MontgomeryPoint = bincode::deserialize(raw_bytes).unwrap();
        assert_eq!(bp, constants::X25519_BASEPOINT);
    }

    /// Test Montgomery -> Edwards on the X/Ed25519 basepoint
    #[test]
    fn basepoint_montgomery_to_edwards() {
        // sign bit = 0 => basepoint
        assert_eq!(
            constants::ED25519_BASEPOINT_POINT,
            constants::X25519_BASEPOINT.to_edwards(0).unwrap()
        );
        // sign bit = 1 => minus basepoint
        assert_eq!(
            -constants::ED25519_BASEPOINT_POINT,
            constants::X25519_BASEPOINT.to_edwards(1).unwrap()
        );
    }

    /// Test Edwards -> Montgomery on the X/Ed25519 basepoint
    #[test]
    fn basepoint_edwards_to_montgomery() {
        assert_eq!(
            constants::ED25519_BASEPOINT_POINT.to_montgomery(),
            constants::X25519_BASEPOINT
        );
    }

    /// Check that Montgomery -> Edwards fails for points on the twist.
    #[test]
    fn montgomery_to_edwards_rejects_twist() {
        let one = FieldElement::ONE;

        // u = 2 corresponds to a point on the twist.
        let two = MontgomeryPoint((&one + &one).as_bytes());

        assert!(two.to_edwards(0).is_none());

        // u = -1 corresponds to a point on the twist, but should be
        // checked explicitly because it's an exceptional point for the
        // birational map.  For instance, libsignal will accept it.
        let minus_one = MontgomeryPoint((-&one).as_bytes());

        assert!(minus_one.to_edwards(0).is_none());
    }

    #[test]
    fn eq_defined_mod_p() {
        let mut u18_bytes = [0u8; 32];
        u18_bytes[0] = 18;
        let u18 = MontgomeryPoint(u18_bytes);
        let u18_unred = MontgomeryPoint([255; 32]);

        assert_eq!(u18, u18_unred);
    }

    /// Returns a random point on the prime-order subgroup
    fn rand_prime_order_point(mut rng: impl RngCore + CryptoRng) -> EdwardsPoint {
        let s: Scalar = Scalar::random(&mut rng);
        EdwardsPoint::mul_base(&s)
    }

    /// Given a bytestring that's little-endian at the byte level, return an iterator over all the
    /// bits, in little-endian order.
    fn bytestring_bits_le(x: &[u8]) -> impl DoubleEndedIterator<Item = bool> + Clone + '_ {
        let bitlen = x.len() * 8;
        (0..bitlen).map(|i| {
            // As i runs from 0..256, the bottom 3 bits index the bit, while the upper bits index
            // the byte. Since self.bytes is little-endian at the byte level, this iterator is
            // little-endian on the bit level
            ((x[i >> 3] >> (i & 7)) & 1u8) == 1
        })
    }

    #[test]
    fn montgomery_ladder_matches_edwards_scalarmult() {
        let mut csprng = rand_core::OsRng;

        for _ in 0..100 {
            let p_edwards = rand_prime_order_point(&mut csprng);
            let p_montgomery: MontgomeryPoint = p_edwards.to_montgomery();

            let s: Scalar = Scalar::random(&mut csprng);
            let expected = s * p_edwards;
            let result = s * p_montgomery;

            assert_eq!(result, expected.to_montgomery())
        }
    }

    // Tests that, on the prime-order subgroup, MontgomeryPoint::mul_bits_be is the same as
    // multiplying by the Scalar representation of the same bits
    #[test]
    fn montgomery_mul_bits_be() {
        let mut csprng = rand_core::OsRng;

        for _ in 0..100 {
            // Make a random prime-order point P
            let p_edwards = rand_prime_order_point(&mut csprng);
            let p_montgomery: MontgomeryPoint = p_edwards.to_montgomery();

            // Make a random integer b
            let mut bigint = [0u8; 64];
            csprng.fill_bytes(&mut bigint[..]);
            let bigint_bits_be = bytestring_bits_le(&bigint).rev();

            // Check that bP is the same whether calculated as scalar-times-edwards or
            // integer-times-montgomery.
            let expected = Scalar::from_bytes_mod_order_wide(&bigint) * p_edwards;
            let result = p_montgomery.mul_bits_be(bigint_bits_be);
            assert_eq!(result, expected.to_montgomery())
        }
    }

    // Tests that MontgomeryPoint::mul_bits_be is consistent on any point, even ones that might be
    // on the curve's twist. Specifically, this tests that b₁(b₂P) == b₂(b₁P) for random
    // integers b₁, b₂ and random (curve or twist) point P.
    #[test]
    fn montgomery_mul_bits_be_twist() {
        let mut csprng = rand_core::OsRng;

        for _ in 0..100 {
            // Make a random point P on the curve or its twist
            let p_montgomery = {
                let mut buf = [0u8; 32];
                csprng.fill_bytes(&mut buf);
                MontgomeryPoint(buf)
            };

            // Compute two big integers b₁ and b₂
            let mut bigint1 = [0u8; 64];
            let mut bigint2 = [0u8; 64];
            csprng.fill_bytes(&mut bigint1[..]);
            csprng.fill_bytes(&mut bigint2[..]);

            // Compute b₁P and b₂P
            let bigint1_bits_be = bytestring_bits_le(&bigint1).rev();
            let bigint2_bits_be = bytestring_bits_le(&bigint2).rev();
            let prod1 = p_montgomery.mul_bits_be(bigint1_bits_be.clone());
            let prod2 = p_montgomery.mul_bits_be(bigint2_bits_be.clone());

            // Check that b₁(b₂P) == b₂(b₁P)
            assert_eq!(
                prod1.mul_bits_be(bigint2_bits_be),
                prod2.mul_bits_be(bigint1_bits_be)
            );
        }
    }

    /// Check that mul_base_clamped and mul_clamped agree
    #[test]
    fn mul_base_clamped() {
        let mut csprng = rand_core::OsRng;

        // Test agreement on a large integer. Even after clamping, this is not reduced mod l.
        let a_bytes = [0xff; 32];
        assert_eq!(
            MontgomeryPoint::mul_base_clamped(a_bytes),
            constants::X25519_BASEPOINT.mul_clamped(a_bytes)
        );

        // Test agreement on random integers
        for _ in 0..100 {
            // This will be reduced mod l with probability l / 2^256 ≈ 6.25%
            let mut a_bytes = [0u8; 32];
            csprng.fill_bytes(&mut a_bytes);

            assert_eq!(
                MontgomeryPoint::mul_base_clamped(a_bytes),
                constants::X25519_BASEPOINT.mul_clamped(a_bytes)
            );
        }
    }

    #[cfg(feature = "alloc")]
    const ELLIGATOR_CORRECT_OUTPUT: [u8; 32] = [
        0x5f, 0x35, 0x20, 0x00, 0x1c, 0x6c, 0x99, 0x36, 0xa3, 0x12, 0x06, 0xaf, 0xe7, 0xc7, 0xac,
        0x22, 0x4e, 0x88, 0x61, 0x61, 0x9b, 0xf9, 0x88, 0x72, 0x44, 0x49, 0x15, 0x89, 0x9d, 0x95,
        0xf4, 0x6e,
    ];

    #[test]
    #[cfg(feature = "alloc")]
    fn montgomery_elligator_correct() {
        let bytes: Vec<u8> = (0u8..32u8).collect();
        let bits_in: [u8; 32] = (&bytes[..]).try_into().expect("Range invariant broken");

        let fe = FieldElement::from_bytes(&bits_in);
        let eg = elligator_encode(&fe);
        assert_eq!(eg.to_bytes(), ELLIGATOR_CORRECT_OUTPUT);
    }

    #[test]
    fn montgomery_elligator_zero_zero() {
        let zero = [0u8; 32];
        let fe = FieldElement::from_bytes(&zero);
        let eg = elligator_encode(&fe);
        assert_eq!(eg.to_bytes(), zero);
    }
}