curve25519_dalek/montgomery.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
// -*- mode: rust; -*-
//
// This file is part of curve25519-dalek.
// Copyright (c) 2016-2021 isis lovecruft
// Copyright (c) 2016-2019 Henry de Valence
// See LICENSE for licensing information.
//
// Authors:
// - isis agora lovecruft <isis@patternsinthevoid.net>
// - Henry de Valence <hdevalence@hdevalence.ca>
//! Scalar multiplication on the Montgomery form of Curve25519.
//!
//! To avoid notational confusion with the Edwards code, we use
//! variables \\( u, v \\) for the Montgomery curve, so that “Montgomery
//! \\(u\\)” here corresponds to “Montgomery \\(x\\)” elsewhere.
//!
//! Montgomery arithmetic works not on the curve itself, but on the
//! \\(u\\)-line, which discards sign information and unifies the curve
//! and its quadratic twist. See [_Montgomery curves and their
//! arithmetic_][costello-smith] by Costello and Smith for more details.
//!
//! The `MontgomeryPoint` struct contains the affine \\(u\\)-coordinate
//! \\(u\_0(P)\\) of a point \\(P\\) on either the curve or the twist.
//! Here the map \\(u\_0 : \mathcal M \rightarrow \mathbb F\_p \\) is
//! defined by \\(u\_0((u,v)) = u\\); \\(u\_0(\mathcal O) = 0\\). See
//! section 5.4 of Costello-Smith for more details.
//!
//! # Scalar Multiplication
//!
//! Scalar multiplication on `MontgomeryPoint`s is provided by the `*`
//! operator, which implements the Montgomery ladder.
//!
//! # Edwards Conversion
//!
//! The \\(2\\)-to-\\(1\\) map from the Edwards model to the Montgomery
//! \\(u\\)-line is provided by `EdwardsPoint::to_montgomery()`.
//!
//! To lift a `MontgomeryPoint` to an `EdwardsPoint`, use
//! `MontgomeryPoint::to_edwards()`, which takes a sign parameter.
//! This function rejects `MontgomeryPoints` which correspond to points
//! on the twist.
//!
//! [costello-smith]: https://eprint.iacr.org/2017/212.pdf
// We allow non snake_case names because coordinates in projective space are
// traditionally denoted by the capitalisation of their respective
// counterparts in affine space. Yeah, you heard me, rustc, I'm gonna have my
// affine and projective cakes and eat both of them too.
#![allow(non_snake_case)]
use core::{
hash::{Hash, Hasher},
ops::{Mul, MulAssign},
};
use crate::constants::{APLUS2_OVER_FOUR, MONTGOMERY_A, MONTGOMERY_A_NEG};
use crate::edwards::{CompressedEdwardsY, EdwardsPoint};
use crate::field::FieldElement;
use crate::scalar::{clamp_integer, Scalar};
use crate::traits::Identity;
use subtle::Choice;
use subtle::ConstantTimeEq;
use subtle::{ConditionallyNegatable, ConditionallySelectable};
#[cfg(feature = "zeroize")]
use zeroize::Zeroize;
/// Holds the \\(u\\)-coordinate of a point on the Montgomery form of
/// Curve25519 or its twist.
#[derive(Copy, Clone, Debug, Default)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct MontgomeryPoint(pub [u8; 32]);
/// Equality of `MontgomeryPoint`s is defined mod p.
impl ConstantTimeEq for MontgomeryPoint {
fn ct_eq(&self, other: &MontgomeryPoint) -> Choice {
let self_fe = FieldElement::from_bytes(&self.0);
let other_fe = FieldElement::from_bytes(&other.0);
self_fe.ct_eq(&other_fe)
}
}
impl PartialEq for MontgomeryPoint {
fn eq(&self, other: &MontgomeryPoint) -> bool {
self.ct_eq(other).into()
}
}
impl Eq for MontgomeryPoint {}
// Equal MontgomeryPoints must hash to the same value. So we have to get them into a canonical
// encoding first
impl Hash for MontgomeryPoint {
fn hash<H: Hasher>(&self, state: &mut H) {
// Do a round trip through a `FieldElement`. `as_bytes` is guaranteed to give a canonical
// 32-byte encoding
let canonical_bytes = FieldElement::from_bytes(&self.0).as_bytes();
canonical_bytes.hash(state);
}
}
impl Identity for MontgomeryPoint {
/// Return the group identity element, which has order 4.
fn identity() -> MontgomeryPoint {
MontgomeryPoint([0u8; 32])
}
}
#[cfg(feature = "zeroize")]
impl Zeroize for MontgomeryPoint {
fn zeroize(&mut self) {
self.0.zeroize();
}
}
impl MontgomeryPoint {
/// Fixed-base scalar multiplication (i.e. multiplication by the base point).
pub fn mul_base(scalar: &Scalar) -> Self {
EdwardsPoint::mul_base(scalar).to_montgomery()
}
/// Multiply this point by `clamp_integer(bytes)`. For a description of clamping, see
/// [`clamp_integer`].
pub fn mul_clamped(self, bytes: [u8; 32]) -> Self {
// We have to construct a Scalar that is not reduced mod l, which breaks scalar invariant
// #2. But #2 is not necessary for correctness of variable-base multiplication. All that
// needs to hold is invariant #1, i.e., the scalar is less than 2^255. This is guaranteed
// by clamping.
// Further, we don't do any reduction or arithmetic with this clamped value, so there's no
// issues arising from the fact that the curve point is not necessarily in the prime-order
// subgroup.
let s = Scalar {
bytes: clamp_integer(bytes),
};
s * self
}
/// Multiply the basepoint by `clamp_integer(bytes)`. For a description of clamping, see
/// [`clamp_integer`].
pub fn mul_base_clamped(bytes: [u8; 32]) -> Self {
// See reasoning in Self::mul_clamped why it is OK to make an unreduced Scalar here. We
// note that fixed-base multiplication is also defined for all values of `bytes` less than
// 2^255.
let s = Scalar {
bytes: clamp_integer(bytes),
};
Self::mul_base(&s)
}
/// Given `self` \\( = u\_0(P) \\), and a big-endian bit representation of an integer
/// \\(n\\), return \\( u\_0(\[n\]P) \\). This is constant time in the length of `bits`.
///
/// **NOTE:** You probably do not want to use this function. Almost every protocol built on
/// Curve25519 uses _clamped multiplication_, explained
/// [here](https://neilmadden.blog/2020/05/28/whats-the-curve25519-clamping-all-about/).
/// When in doubt, use [`Self::mul_clamped`].
pub fn mul_bits_be(&self, bits: impl Iterator<Item = bool>) -> MontgomeryPoint {
// Algorithm 8 of Costello-Smith 2017
let affine_u = FieldElement::from_bytes(&self.0);
let mut x0 = ProjectivePoint::identity();
let mut x1 = ProjectivePoint {
U: affine_u,
W: FieldElement::ONE,
};
// Go through the bits from most to least significant, using a sliding window of 2
let mut prev_bit = false;
for cur_bit in bits {
let choice: u8 = (prev_bit ^ cur_bit) as u8;
debug_assert!(choice == 0 || choice == 1);
ProjectivePoint::conditional_swap(&mut x0, &mut x1, choice.into());
differential_add_and_double(&mut x0, &mut x1, &affine_u);
prev_bit = cur_bit;
}
// The final value of prev_bit above is scalar.bits()[0], i.e., the LSB of scalar
ProjectivePoint::conditional_swap(&mut x0, &mut x1, Choice::from(prev_bit as u8));
// Don't leave the bit in the stack
#[cfg(feature = "zeroize")]
prev_bit.zeroize();
x0.as_affine()
}
/// View this `MontgomeryPoint` as an array of bytes.
pub const fn as_bytes(&self) -> &[u8; 32] {
&self.0
}
/// Convert this `MontgomeryPoint` to an array of bytes.
pub const fn to_bytes(&self) -> [u8; 32] {
self.0
}
/// Attempt to convert to an `EdwardsPoint`, using the supplied
/// choice of sign for the `EdwardsPoint`.
///
/// # Inputs
///
/// * `sign`: a `u8` donating the desired sign of the resulting
/// `EdwardsPoint`. `0` denotes positive and `1` negative.
///
/// # Return
///
/// * `Some(EdwardsPoint)` if `self` is the \\(u\\)-coordinate of a
/// point on (the Montgomery form of) Curve25519;
///
/// * `None` if `self` is the \\(u\\)-coordinate of a point on the
/// twist of (the Montgomery form of) Curve25519;
///
pub fn to_edwards(&self, sign: u8) -> Option<EdwardsPoint> {
// To decompress the Montgomery u coordinate to an
// `EdwardsPoint`, we apply the birational map to obtain the
// Edwards y coordinate, then do Edwards decompression.
//
// The birational map is y = (u-1)/(u+1).
//
// The exceptional points are the zeros of the denominator,
// i.e., u = -1.
//
// But when u = -1, v^2 = u*(u^2+486662*u+1) = 486660.
//
// Since this is nonsquare mod p, u = -1 corresponds to a point
// on the twist, not the curve, so we can reject it early.
let u = FieldElement::from_bytes(&self.0);
if u == FieldElement::MINUS_ONE {
return None;
}
let one = FieldElement::ONE;
let y = &(&u - &one) * &(&u + &one).invert();
let mut y_bytes = y.as_bytes();
y_bytes[31] ^= sign << 7;
CompressedEdwardsY(y_bytes).decompress()
}
}
/// Perform the Elligator2 mapping to a Montgomery point.
///
/// See <https://tools.ietf.org/html/draft-irtf-cfrg-hash-to-curve-10#section-6.7.1>
//
// TODO Determine how much of the hash-to-group API should be exposed after the CFRG
// draft gets into a more polished/accepted state.
#[allow(unused)]
pub(crate) fn elligator_encode(r_0: &FieldElement) -> MontgomeryPoint {
let one = FieldElement::ONE;
let d_1 = &one + &r_0.square2(); /* 2r^2 */
let d = &MONTGOMERY_A_NEG * &(d_1.invert()); /* A/(1+2r^2) */
let d_sq = &d.square();
let au = &MONTGOMERY_A * &d;
let inner = &(d_sq + &au) + &one;
let eps = &d * &inner; /* eps = d^3 + Ad^2 + d */
let (eps_is_sq, _eps) = FieldElement::sqrt_ratio_i(&eps, &one);
let zero = FieldElement::ZERO;
let Atemp = FieldElement::conditional_select(&MONTGOMERY_A, &zero, eps_is_sq); /* 0, or A if nonsquare*/
let mut u = &d + &Atemp; /* d, or d+A if nonsquare */
u.conditional_negate(!eps_is_sq); /* d, or -d-A if nonsquare */
MontgomeryPoint(u.as_bytes())
}
/// A `ProjectivePoint` holds a point on the projective line
/// \\( \mathbb P(\mathbb F\_p) \\), which we identify with the Kummer
/// line of the Montgomery curve.
#[derive(Copy, Clone, Debug)]
struct ProjectivePoint {
pub U: FieldElement,
pub W: FieldElement,
}
impl Identity for ProjectivePoint {
fn identity() -> ProjectivePoint {
ProjectivePoint {
U: FieldElement::ONE,
W: FieldElement::ZERO,
}
}
}
impl Default for ProjectivePoint {
fn default() -> ProjectivePoint {
ProjectivePoint::identity()
}
}
impl ConditionallySelectable for ProjectivePoint {
fn conditional_select(
a: &ProjectivePoint,
b: &ProjectivePoint,
choice: Choice,
) -> ProjectivePoint {
ProjectivePoint {
U: FieldElement::conditional_select(&a.U, &b.U, choice),
W: FieldElement::conditional_select(&a.W, &b.W, choice),
}
}
}
impl ProjectivePoint {
/// Dehomogenize this point to affine coordinates.
///
/// # Return
///
/// * \\( u = U / W \\) if \\( W \neq 0 \\);
/// * \\( 0 \\) if \\( W \eq 0 \\);
pub fn as_affine(&self) -> MontgomeryPoint {
let u = &self.U * &self.W.invert();
MontgomeryPoint(u.as_bytes())
}
}
/// Perform the double-and-add step of the Montgomery ladder.
///
/// Given projective points
/// \\( (U\_P : W\_P) = u(P) \\),
/// \\( (U\_Q : W\_Q) = u(Q) \\),
/// and the affine difference
/// \\( u\_{P-Q} = u(P-Q) \\), set
/// $$
/// (U\_P : W\_P) \gets u(\[2\]P)
/// $$
/// and
/// $$
/// (U\_Q : W\_Q) \gets u(P + Q).
/// $$
#[rustfmt::skip] // keep alignment of explanatory comments
fn differential_add_and_double(
P: &mut ProjectivePoint,
Q: &mut ProjectivePoint,
affine_PmQ: &FieldElement,
) {
let t0 = &P.U + &P.W;
let t1 = &P.U - &P.W;
let t2 = &Q.U + &Q.W;
let t3 = &Q.U - &Q.W;
let t4 = t0.square(); // (U_P + W_P)^2 = U_P^2 + 2 U_P W_P + W_P^2
let t5 = t1.square(); // (U_P - W_P)^2 = U_P^2 - 2 U_P W_P + W_P^2
let t6 = &t4 - &t5; // 4 U_P W_P
let t7 = &t0 * &t3; // (U_P + W_P) (U_Q - W_Q) = U_P U_Q + W_P U_Q - U_P W_Q - W_P W_Q
let t8 = &t1 * &t2; // (U_P - W_P) (U_Q + W_Q) = U_P U_Q - W_P U_Q + U_P W_Q - W_P W_Q
let t9 = &t7 + &t8; // 2 (U_P U_Q - W_P W_Q)
let t10 = &t7 - &t8; // 2 (W_P U_Q - U_P W_Q)
let t11 = t9.square(); // 4 (U_P U_Q - W_P W_Q)^2
let t12 = t10.square(); // 4 (W_P U_Q - U_P W_Q)^2
let t13 = &APLUS2_OVER_FOUR * &t6; // (A + 2) U_P U_Q
let t14 = &t4 * &t5; // ((U_P + W_P)(U_P - W_P))^2 = (U_P^2 - W_P^2)^2
let t15 = &t13 + &t5; // (U_P - W_P)^2 + (A + 2) U_P W_P
let t16 = &t6 * &t15; // 4 (U_P W_P) ((U_P - W_P)^2 + (A + 2) U_P W_P)
let t17 = affine_PmQ * &t12; // U_D * 4 (W_P U_Q - U_P W_Q)^2
let t18 = t11; // W_D * 4 (U_P U_Q - W_P W_Q)^2
P.U = t14; // U_{P'} = (U_P + W_P)^2 (U_P - W_P)^2
P.W = t16; // W_{P'} = (4 U_P W_P) ((U_P - W_P)^2 + ((A + 2)/4) 4 U_P W_P)
Q.U = t18; // U_{Q'} = W_D * 4 (U_P U_Q - W_P W_Q)^2
Q.W = t17; // W_{Q'} = U_D * 4 (W_P U_Q - U_P W_Q)^2
}
define_mul_assign_variants!(LHS = MontgomeryPoint, RHS = Scalar);
define_mul_variants!(
LHS = MontgomeryPoint,
RHS = Scalar,
Output = MontgomeryPoint
);
define_mul_variants!(
LHS = Scalar,
RHS = MontgomeryPoint,
Output = MontgomeryPoint
);
/// Multiply this `MontgomeryPoint` by a `Scalar`.
impl Mul<&Scalar> for &MontgomeryPoint {
type Output = MontgomeryPoint;
/// Given `self` \\( = u\_0(P) \\), and a `Scalar` \\(n\\), return \\( u\_0(\[n\]P) \\)
fn mul(self, scalar: &Scalar) -> MontgomeryPoint {
// We multiply by the integer representation of the given Scalar. By scalar invariant #1,
// the MSB is 0, so we can skip it.
self.mul_bits_be(scalar.bits_le().rev().skip(1))
}
}
impl MulAssign<&Scalar> for MontgomeryPoint {
fn mul_assign(&mut self, scalar: &Scalar) {
*self = (self as &MontgomeryPoint) * scalar;
}
}
impl Mul<&MontgomeryPoint> for &Scalar {
type Output = MontgomeryPoint;
fn mul(self, point: &MontgomeryPoint) -> MontgomeryPoint {
point * self
}
}
// ------------------------------------------------------------------------
// Tests
// ------------------------------------------------------------------------
#[cfg(test)]
mod test {
use super::*;
use crate::constants;
#[cfg(feature = "alloc")]
use alloc::vec::Vec;
use rand_core::{CryptoRng, RngCore};
#[test]
fn identity_in_different_coordinates() {
let id_projective = ProjectivePoint::identity();
let id_montgomery = id_projective.as_affine();
assert!(id_montgomery == MontgomeryPoint::identity());
}
#[test]
fn identity_in_different_models() {
assert!(EdwardsPoint::identity().to_montgomery() == MontgomeryPoint::identity());
}
#[test]
#[cfg(feature = "serde")]
fn serde_bincode_basepoint_roundtrip() {
use bincode;
let encoded = bincode::serialize(&constants::X25519_BASEPOINT).unwrap();
let decoded: MontgomeryPoint = bincode::deserialize(&encoded).unwrap();
assert_eq!(encoded.len(), 32);
assert_eq!(decoded, constants::X25519_BASEPOINT);
let raw_bytes = constants::X25519_BASEPOINT.as_bytes();
let bp: MontgomeryPoint = bincode::deserialize(raw_bytes).unwrap();
assert_eq!(bp, constants::X25519_BASEPOINT);
}
/// Test Montgomery -> Edwards on the X/Ed25519 basepoint
#[test]
fn basepoint_montgomery_to_edwards() {
// sign bit = 0 => basepoint
assert_eq!(
constants::ED25519_BASEPOINT_POINT,
constants::X25519_BASEPOINT.to_edwards(0).unwrap()
);
// sign bit = 1 => minus basepoint
assert_eq!(
-constants::ED25519_BASEPOINT_POINT,
constants::X25519_BASEPOINT.to_edwards(1).unwrap()
);
}
/// Test Edwards -> Montgomery on the X/Ed25519 basepoint
#[test]
fn basepoint_edwards_to_montgomery() {
assert_eq!(
constants::ED25519_BASEPOINT_POINT.to_montgomery(),
constants::X25519_BASEPOINT
);
}
/// Check that Montgomery -> Edwards fails for points on the twist.
#[test]
fn montgomery_to_edwards_rejects_twist() {
let one = FieldElement::ONE;
// u = 2 corresponds to a point on the twist.
let two = MontgomeryPoint((&one + &one).as_bytes());
assert!(two.to_edwards(0).is_none());
// u = -1 corresponds to a point on the twist, but should be
// checked explicitly because it's an exceptional point for the
// birational map. For instance, libsignal will accept it.
let minus_one = MontgomeryPoint((-&one).as_bytes());
assert!(minus_one.to_edwards(0).is_none());
}
#[test]
fn eq_defined_mod_p() {
let mut u18_bytes = [0u8; 32];
u18_bytes[0] = 18;
let u18 = MontgomeryPoint(u18_bytes);
let u18_unred = MontgomeryPoint([255; 32]);
assert_eq!(u18, u18_unred);
}
/// Returns a random point on the prime-order subgroup
fn rand_prime_order_point(mut rng: impl RngCore + CryptoRng) -> EdwardsPoint {
let s: Scalar = Scalar::random(&mut rng);
EdwardsPoint::mul_base(&s)
}
/// Given a bytestring that's little-endian at the byte level, return an iterator over all the
/// bits, in little-endian order.
fn bytestring_bits_le(x: &[u8]) -> impl DoubleEndedIterator<Item = bool> + Clone + '_ {
let bitlen = x.len() * 8;
(0..bitlen).map(|i| {
// As i runs from 0..256, the bottom 3 bits index the bit, while the upper bits index
// the byte. Since self.bytes is little-endian at the byte level, this iterator is
// little-endian on the bit level
((x[i >> 3] >> (i & 7)) & 1u8) == 1
})
}
#[test]
fn montgomery_ladder_matches_edwards_scalarmult() {
let mut csprng = rand_core::OsRng;
for _ in 0..100 {
let p_edwards = rand_prime_order_point(&mut csprng);
let p_montgomery: MontgomeryPoint = p_edwards.to_montgomery();
let s: Scalar = Scalar::random(&mut csprng);
let expected = s * p_edwards;
let result = s * p_montgomery;
assert_eq!(result, expected.to_montgomery())
}
}
// Tests that, on the prime-order subgroup, MontgomeryPoint::mul_bits_be is the same as
// multiplying by the Scalar representation of the same bits
#[test]
fn montgomery_mul_bits_be() {
let mut csprng = rand_core::OsRng;
for _ in 0..100 {
// Make a random prime-order point P
let p_edwards = rand_prime_order_point(&mut csprng);
let p_montgomery: MontgomeryPoint = p_edwards.to_montgomery();
// Make a random integer b
let mut bigint = [0u8; 64];
csprng.fill_bytes(&mut bigint[..]);
let bigint_bits_be = bytestring_bits_le(&bigint).rev();
// Check that bP is the same whether calculated as scalar-times-edwards or
// integer-times-montgomery.
let expected = Scalar::from_bytes_mod_order_wide(&bigint) * p_edwards;
let result = p_montgomery.mul_bits_be(bigint_bits_be);
assert_eq!(result, expected.to_montgomery())
}
}
// Tests that MontgomeryPoint::mul_bits_be is consistent on any point, even ones that might be
// on the curve's twist. Specifically, this tests that b₁(b₂P) == b₂(b₁P) for random
// integers b₁, b₂ and random (curve or twist) point P.
#[test]
fn montgomery_mul_bits_be_twist() {
let mut csprng = rand_core::OsRng;
for _ in 0..100 {
// Make a random point P on the curve or its twist
let p_montgomery = {
let mut buf = [0u8; 32];
csprng.fill_bytes(&mut buf);
MontgomeryPoint(buf)
};
// Compute two big integers b₁ and b₂
let mut bigint1 = [0u8; 64];
let mut bigint2 = [0u8; 64];
csprng.fill_bytes(&mut bigint1[..]);
csprng.fill_bytes(&mut bigint2[..]);
// Compute b₁P and b₂P
let bigint1_bits_be = bytestring_bits_le(&bigint1).rev();
let bigint2_bits_be = bytestring_bits_le(&bigint2).rev();
let prod1 = p_montgomery.mul_bits_be(bigint1_bits_be.clone());
let prod2 = p_montgomery.mul_bits_be(bigint2_bits_be.clone());
// Check that b₁(b₂P) == b₂(b₁P)
assert_eq!(
prod1.mul_bits_be(bigint2_bits_be),
prod2.mul_bits_be(bigint1_bits_be)
);
}
}
/// Check that mul_base_clamped and mul_clamped agree
#[test]
fn mul_base_clamped() {
let mut csprng = rand_core::OsRng;
// Test agreement on a large integer. Even after clamping, this is not reduced mod l.
let a_bytes = [0xff; 32];
assert_eq!(
MontgomeryPoint::mul_base_clamped(a_bytes),
constants::X25519_BASEPOINT.mul_clamped(a_bytes)
);
// Test agreement on random integers
for _ in 0..100 {
// This will be reduced mod l with probability l / 2^256 ≈ 6.25%
let mut a_bytes = [0u8; 32];
csprng.fill_bytes(&mut a_bytes);
assert_eq!(
MontgomeryPoint::mul_base_clamped(a_bytes),
constants::X25519_BASEPOINT.mul_clamped(a_bytes)
);
}
}
#[cfg(feature = "alloc")]
const ELLIGATOR_CORRECT_OUTPUT: [u8; 32] = [
0x5f, 0x35, 0x20, 0x00, 0x1c, 0x6c, 0x99, 0x36, 0xa3, 0x12, 0x06, 0xaf, 0xe7, 0xc7, 0xac,
0x22, 0x4e, 0x88, 0x61, 0x61, 0x9b, 0xf9, 0x88, 0x72, 0x44, 0x49, 0x15, 0x89, 0x9d, 0x95,
0xf4, 0x6e,
];
#[test]
#[cfg(feature = "alloc")]
fn montgomery_elligator_correct() {
let bytes: Vec<u8> = (0u8..32u8).collect();
let bits_in: [u8; 32] = (&bytes[..]).try_into().expect("Range invariant broken");
let fe = FieldElement::from_bytes(&bits_in);
let eg = elligator_encode(&fe);
assert_eq!(eg.to_bytes(), ELLIGATOR_CORRECT_OUTPUT);
}
#[test]
fn montgomery_elligator_zero_zero() {
let zero = [0u8; 32];
let fe = FieldElement::from_bytes(&zero);
let eg = elligator_encode(&fe);
assert_eq!(eg.to_bytes(), zero);
}
}