libm/math/exp2f.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
// origin: FreeBSD /usr/src/lib/msun/src/s_exp2f.c
//-
// Copyright (c) 2005 David Schultz <das@FreeBSD.ORG>
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
// OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
// SUCH DAMAGE.
const TBLSIZE: usize = 16;
static EXP2FT: [u64; TBLSIZE] = [
0x3fe6a09e667f3bcd,
0x3fe7a11473eb0187,
0x3fe8ace5422aa0db,
0x3fe9c49182a3f090,
0x3feae89f995ad3ad,
0x3fec199bdd85529c,
0x3fed5818dcfba487,
0x3feea4afa2a490da,
0x3ff0000000000000,
0x3ff0b5586cf9890f,
0x3ff172b83c7d517b,
0x3ff2387a6e756238,
0x3ff306fe0a31b715,
0x3ff3dea64c123422,
0x3ff4bfdad5362a27,
0x3ff5ab07dd485429,
];
// exp2f(x): compute the base 2 exponential of x
//
// Accuracy: Peak error < 0.501 ulp; location of peak: -0.030110927.
//
// Method: (equally-spaced tables)
//
// Reduce x:
// x = k + y, for integer k and |y| <= 1/2.
// Thus we have exp2f(x) = 2**k * exp2(y).
//
// Reduce y:
// y = i/TBLSIZE + z for integer i near y * TBLSIZE.
// Thus we have exp2(y) = exp2(i/TBLSIZE) * exp2(z),
// with |z| <= 2**-(TBLSIZE+1).
//
// We compute exp2(i/TBLSIZE) via table lookup and exp2(z) via a
// degree-4 minimax polynomial with maximum error under 1.4 * 2**-33.
// Using double precision for everything except the reduction makes
// roundoff error insignificant and simplifies the scaling step.
//
// This method is due to Tang, but I do not use his suggested parameters:
//
// Tang, P. Table-driven Implementation of the Exponential Function
// in IEEE Floating-Point Arithmetic. TOMS 15(2), 144-157 (1989).
/// Exponential, base 2 (f32)
///
/// Calculate `2^x`, that is, 2 raised to the power `x`.
#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
pub fn exp2f(mut x: f32) -> f32 {
let redux = f32::from_bits(0x4b400000) / TBLSIZE as f32;
let p1 = f32::from_bits(0x3f317218);
let p2 = f32::from_bits(0x3e75fdf0);
let p3 = f32::from_bits(0x3d6359a4);
let p4 = f32::from_bits(0x3c1d964e);
// double_t t, r, z;
// uint32_t ix, i0, k;
let x1p127 = f32::from_bits(0x7f000000);
/* Filter out exceptional cases. */
let ui = f32::to_bits(x);
let ix = ui & 0x7fffffff;
if ix > 0x42fc0000 {
/* |x| > 126 */
if ix > 0x7f800000 {
/* NaN */
return x;
}
if ui >= 0x43000000 && ui < 0x80000000 {
/* x >= 128 */
x *= x1p127;
return x;
}
if ui >= 0x80000000 {
/* x < -126 */
if ui >= 0xc3160000 || (ui & 0x0000ffff != 0) {
force_eval!(f32::from_bits(0x80000001) / x);
}
if ui >= 0xc3160000 {
/* x <= -150 */
return 0.0;
}
}
} else if ix <= 0x33000000 {
/* |x| <= 0x1p-25 */
return 1.0 + x;
}
/* Reduce x, computing z, i0, and k. */
let ui = f32::to_bits(x + redux);
let mut i0 = ui;
i0 += TBLSIZE as u32 / 2;
let k = i0 / TBLSIZE as u32;
let ukf = f64::from_bits(((0x3ff + k) as u64) << 52);
i0 &= TBLSIZE as u32 - 1;
let mut uf = f32::from_bits(ui);
uf -= redux;
let z: f64 = (x - uf) as f64;
/* Compute r = exp2(y) = exp2ft[i0] * p(z). */
let r: f64 = f64::from_bits(i!(EXP2FT, i0 as usize));
let t: f64 = r as f64 * z;
let r: f64 = r + t * (p1 as f64 + z * p2 as f64) + t * (z * z) * (p3 as f64 + z * p4 as f64);
/* Scale by 2**k */
(r * ukf) as f32
}