tracing_subscriber/layer/layered.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
use tracing_core::{metadata::Metadata, span, Dispatch, Event, Interest, LevelFilter, Subscriber};
use crate::{
filter,
layer::{Context, Layer},
registry::LookupSpan,
};
#[cfg(all(feature = "registry", feature = "std"))]
use crate::{filter::FilterId, registry::Registry};
use core::{
any::{Any, TypeId},
cmp, fmt,
marker::PhantomData,
};
/// A [`Subscriber`] composed of a `Subscriber` wrapped by one or more
/// [`Layer`]s.
///
/// [`Layer`]: crate::Layer
/// [`Subscriber`]: tracing_core::Subscriber
#[derive(Clone)]
pub struct Layered<L, I, S = I> {
/// The layer.
layer: L,
/// The inner value that `self.layer` was layered onto.
///
/// If this is also a `Layer`, then this `Layered` will implement `Layer`.
/// If this is a `Subscriber`, then this `Layered` will implement
/// `Subscriber` instead.
inner: I,
// These booleans are used to determine how to combine `Interest`s and max
// level hints when per-layer filters are in use.
/// Is `self.inner` a `Registry`?
///
/// If so, when combining `Interest`s, we want to "bubble up" its
/// `Interest`.
inner_is_registry: bool,
/// Does `self.layer` have per-layer filters?
///
/// This will be true if:
/// - `self.inner` is a `Filtered`.
/// - `self.inner` is a tree of `Layered`s where _all_ arms of those
/// `Layered`s have per-layer filters.
///
/// Otherwise, if it's a `Layered` with one per-layer filter in one branch,
/// but a non-per-layer-filtered layer in the other branch, this will be
/// _false_, because the `Layered` is already handling the combining of
/// per-layer filter `Interest`s and max level hints with its non-filtered
/// `Layer`.
has_layer_filter: bool,
/// Does `self.inner` have per-layer filters?
///
/// This is determined according to the same rules as
/// `has_layer_filter` above.
inner_has_layer_filter: bool,
_s: PhantomData<fn(S)>,
}
// === impl Layered ===
impl<L, S> Layered<L, S>
where
L: Layer<S>,
S: Subscriber,
{
/// Returns `true` if this [`Subscriber`] is the same type as `T`.
pub fn is<T: Any>(&self) -> bool {
self.downcast_ref::<T>().is_some()
}
/// Returns some reference to this [`Subscriber`] value if it is of type `T`,
/// or `None` if it isn't.
pub fn downcast_ref<T: Any>(&self) -> Option<&T> {
unsafe {
let raw = self.downcast_raw(TypeId::of::<T>())?;
if raw.is_null() {
None
} else {
Some(&*(raw as *const T))
}
}
}
}
impl<L, S> Subscriber for Layered<L, S>
where
L: Layer<S>,
S: Subscriber,
{
fn register_callsite(&self, metadata: &'static Metadata<'static>) -> Interest {
self.pick_interest(self.layer.register_callsite(metadata), || {
self.inner.register_callsite(metadata)
})
}
fn enabled(&self, metadata: &Metadata<'_>) -> bool {
if self.layer.enabled(metadata, self.ctx()) {
// if the outer layer enables the callsite metadata, ask the subscriber.
self.inner.enabled(metadata)
} else {
// otherwise, the callsite is disabled by the layer
// If per-layer filters are in use, and we are short-circuiting
// (rather than calling into the inner type), clear the current
// per-layer filter `enabled` state.
#[cfg(feature = "registry")]
filter::FilterState::clear_enabled();
false
}
}
fn max_level_hint(&self) -> Option<LevelFilter> {
self.pick_level_hint(
self.layer.max_level_hint(),
self.inner.max_level_hint(),
super::subscriber_is_none(&self.inner),
)
}
fn new_span(&self, span: &span::Attributes<'_>) -> span::Id {
let id = self.inner.new_span(span);
self.layer.on_new_span(span, &id, self.ctx());
id
}
fn record(&self, span: &span::Id, values: &span::Record<'_>) {
self.inner.record(span, values);
self.layer.on_record(span, values, self.ctx());
}
fn record_follows_from(&self, span: &span::Id, follows: &span::Id) {
self.inner.record_follows_from(span, follows);
self.layer.on_follows_from(span, follows, self.ctx());
}
fn event_enabled(&self, event: &Event<'_>) -> bool {
if self.layer.event_enabled(event, self.ctx()) {
// if the outer layer enables the event, ask the inner subscriber.
self.inner.event_enabled(event)
} else {
// otherwise, the event is disabled by this layer
false
}
}
fn event(&self, event: &Event<'_>) {
self.inner.event(event);
self.layer.on_event(event, self.ctx());
}
fn enter(&self, span: &span::Id) {
self.inner.enter(span);
self.layer.on_enter(span, self.ctx());
}
fn exit(&self, span: &span::Id) {
self.inner.exit(span);
self.layer.on_exit(span, self.ctx());
}
fn clone_span(&self, old: &span::Id) -> span::Id {
let new = self.inner.clone_span(old);
if &new != old {
self.layer.on_id_change(old, &new, self.ctx())
};
new
}
#[inline]
fn drop_span(&self, id: span::Id) {
self.try_close(id);
}
fn try_close(&self, id: span::Id) -> bool {
#[cfg(all(feature = "registry", feature = "std"))]
let subscriber = &self.inner as &dyn Subscriber;
#[cfg(all(feature = "registry", feature = "std"))]
let mut guard = subscriber
.downcast_ref::<Registry>()
.map(|registry| registry.start_close(id.clone()));
if self.inner.try_close(id.clone()) {
// If we have a registry's close guard, indicate that the span is
// closing.
#[cfg(all(feature = "registry", feature = "std"))]
{
if let Some(g) = guard.as_mut() {
g.set_closing()
};
}
self.layer.on_close(id, self.ctx());
true
} else {
false
}
}
#[inline]
fn current_span(&self) -> span::Current {
self.inner.current_span()
}
#[doc(hidden)]
unsafe fn downcast_raw(&self, id: TypeId) -> Option<*const ()> {
// Unlike the implementation of `Layer` for `Layered`, we don't have to
// handle the "magic PLF downcast marker" here. If a `Layered`
// implements `Subscriber`, we already know that the `inner` branch is
// going to contain something that doesn't have per-layer filters (the
// actual root `Subscriber`). Thus, a `Layered` that implements
// `Subscriber` will always be propagating the root subscriber's
// `Interest`/level hint, even if it includes a `Layer` that has
// per-layer filters, because it will only ever contain layers where
// _one_ child has per-layer filters.
//
// The complex per-layer filter detection logic is only relevant to
// *trees* of layers, which involve the `Layer` implementation for
// `Layered`, not *lists* of layers, where every `Layered` implements
// `Subscriber`. Of course, a linked list can be thought of as a
// degenerate tree...but luckily, we are able to make a type-level
// distinction between individual `Layered`s that are definitely
// list-shaped (their inner child implements `Subscriber`), and
// `Layered`s that might be tree-shaped (the inner child is also a
// `Layer`).
// If downcasting to `Self`, return a pointer to `self`.
if id == TypeId::of::<Self>() {
return Some(self as *const _ as *const ());
}
self.layer
.downcast_raw(id)
.or_else(|| self.inner.downcast_raw(id))
}
}
impl<S, A, B> Layer<S> for Layered<A, B, S>
where
A: Layer<S>,
B: Layer<S>,
S: Subscriber,
{
fn on_register_dispatch(&self, subscriber: &Dispatch) {
self.layer.on_register_dispatch(subscriber);
self.inner.on_register_dispatch(subscriber);
}
fn on_layer(&mut self, subscriber: &mut S) {
self.layer.on_layer(subscriber);
self.inner.on_layer(subscriber);
}
fn register_callsite(&self, metadata: &'static Metadata<'static>) -> Interest {
self.pick_interest(self.layer.register_callsite(metadata), || {
self.inner.register_callsite(metadata)
})
}
fn enabled(&self, metadata: &Metadata<'_>, ctx: Context<'_, S>) -> bool {
if self.layer.enabled(metadata, ctx.clone()) {
// if the outer subscriber enables the callsite metadata, ask the inner layer.
self.inner.enabled(metadata, ctx)
} else {
// otherwise, the callsite is disabled by this layer
false
}
}
fn max_level_hint(&self) -> Option<LevelFilter> {
self.pick_level_hint(
self.layer.max_level_hint(),
self.inner.max_level_hint(),
super::layer_is_none(&self.inner),
)
}
#[inline]
fn on_new_span(&self, attrs: &span::Attributes<'_>, id: &span::Id, ctx: Context<'_, S>) {
self.inner.on_new_span(attrs, id, ctx.clone());
self.layer.on_new_span(attrs, id, ctx);
}
#[inline]
fn on_record(&self, span: &span::Id, values: &span::Record<'_>, ctx: Context<'_, S>) {
self.inner.on_record(span, values, ctx.clone());
self.layer.on_record(span, values, ctx);
}
#[inline]
fn on_follows_from(&self, span: &span::Id, follows: &span::Id, ctx: Context<'_, S>) {
self.inner.on_follows_from(span, follows, ctx.clone());
self.layer.on_follows_from(span, follows, ctx);
}
#[inline]
fn event_enabled(&self, event: &Event<'_>, ctx: Context<'_, S>) -> bool {
if self.layer.event_enabled(event, ctx.clone()) {
// if the outer layer enables the event, ask the inner subscriber.
self.inner.event_enabled(event, ctx)
} else {
// otherwise, the event is disabled by this layer
false
}
}
#[inline]
fn on_event(&self, event: &Event<'_>, ctx: Context<'_, S>) {
self.inner.on_event(event, ctx.clone());
self.layer.on_event(event, ctx);
}
#[inline]
fn on_enter(&self, id: &span::Id, ctx: Context<'_, S>) {
self.inner.on_enter(id, ctx.clone());
self.layer.on_enter(id, ctx);
}
#[inline]
fn on_exit(&self, id: &span::Id, ctx: Context<'_, S>) {
self.inner.on_exit(id, ctx.clone());
self.layer.on_exit(id, ctx);
}
#[inline]
fn on_close(&self, id: span::Id, ctx: Context<'_, S>) {
self.inner.on_close(id.clone(), ctx.clone());
self.layer.on_close(id, ctx);
}
#[inline]
fn on_id_change(&self, old: &span::Id, new: &span::Id, ctx: Context<'_, S>) {
self.inner.on_id_change(old, new, ctx.clone());
self.layer.on_id_change(old, new, ctx);
}
#[doc(hidden)]
unsafe fn downcast_raw(&self, id: TypeId) -> Option<*const ()> {
match id {
// If downcasting to `Self`, return a pointer to `self`.
id if id == TypeId::of::<Self>() => Some(self as *const _ as *const ()),
// Oh, we're looking for per-layer filters!
//
// This should only happen if we are inside of another `Layered`,
// and it's trying to determine how it should combine `Interest`s
// and max level hints.
//
// In that case, this `Layered` should be considered to be
// "per-layer filtered" if *both* the outer layer and the inner
// layer/subscriber have per-layer filters. Otherwise, this `Layered
// should *not* be considered per-layer filtered (even if one or the
// other has per layer filters). If only one `Layer` is per-layer
// filtered, *this* `Layered` will handle aggregating the `Interest`
// and level hints on behalf of its children, returning the
// aggregate (which is the value from the &non-per-layer-filtered*
// child).
//
// Yes, this rule *is* slightly counter-intuitive, but it's
// necessary due to a weird edge case that can occur when two
// `Layered`s where one side is per-layer filtered and the other
// isn't are `Layered` together to form a tree. If we didn't have
// this rule, we would actually end up *ignoring* `Interest`s from
// the non-per-layer-filtered layers, since both branches would
// claim to have PLF.
//
// If you don't understand this...that's fine, just don't mess with
// it. :)
id if filter::is_plf_downcast_marker(id) => {
self.layer.downcast_raw(id).and(self.inner.downcast_raw(id))
}
// Otherwise, try to downcast both branches normally...
_ => self
.layer
.downcast_raw(id)
.or_else(|| self.inner.downcast_raw(id)),
}
}
}
impl<'a, L, S> LookupSpan<'a> for Layered<L, S>
where
S: Subscriber + LookupSpan<'a>,
{
type Data = S::Data;
fn span_data(&'a self, id: &span::Id) -> Option<Self::Data> {
self.inner.span_data(id)
}
#[cfg(all(feature = "registry", feature = "std"))]
fn register_filter(&mut self) -> FilterId {
self.inner.register_filter()
}
}
impl<L, S> Layered<L, S>
where
S: Subscriber,
{
fn ctx(&self) -> Context<'_, S> {
Context::new(&self.inner)
}
}
impl<A, B, S> Layered<A, B, S>
where
A: Layer<S>,
S: Subscriber,
{
pub(super) fn new(layer: A, inner: B, inner_has_layer_filter: bool) -> Self {
#[cfg(all(feature = "registry", feature = "std"))]
let inner_is_registry = TypeId::of::<S>() == TypeId::of::<crate::registry::Registry>();
#[cfg(not(all(feature = "registry", feature = "std")))]
let inner_is_registry = false;
let inner_has_layer_filter = inner_has_layer_filter || inner_is_registry;
let has_layer_filter = filter::layer_has_plf(&layer);
Self {
layer,
inner,
has_layer_filter,
inner_has_layer_filter,
inner_is_registry,
_s: PhantomData,
}
}
fn pick_interest(&self, outer: Interest, inner: impl FnOnce() -> Interest) -> Interest {
if self.has_layer_filter {
return inner();
}
// If the outer layer has disabled the callsite, return now so that
// the inner layer/subscriber doesn't get its hopes up.
if outer.is_never() {
// If per-layer filters are in use, and we are short-circuiting
// (rather than calling into the inner type), clear the current
// per-layer filter interest state.
#[cfg(feature = "registry")]
filter::FilterState::take_interest();
return outer;
}
// The `inner` closure will call `inner.register_callsite()`. We do this
// before the `if` statement to ensure that the inner subscriber is
// informed that the callsite exists regardless of the outer layer's
// filtering decision.
let inner = inner();
if outer.is_sometimes() {
// if this interest is "sometimes", return "sometimes" to ensure that
// filters are reevaluated.
return outer;
}
// If there is a per-layer filter in the `inner` stack, and it returns
// `never`, change the interest to `sometimes`, because the `outer`
// layer didn't return `never`. This means that _some_ layer still wants
// to see that callsite, even though the inner stack's per-layer filter
// didn't want it. Therefore, returning `sometimes` will ensure
// `enabled` is called so that the per-layer filter can skip that
// span/event, while the `outer` layer still gets to see it.
if inner.is_never() && self.inner_has_layer_filter {
return Interest::sometimes();
}
// otherwise, allow the inner subscriber or subscriber to weigh in.
inner
}
fn pick_level_hint(
&self,
outer_hint: Option<LevelFilter>,
inner_hint: Option<LevelFilter>,
inner_is_none: bool,
) -> Option<LevelFilter> {
if self.inner_is_registry {
return outer_hint;
}
if self.has_layer_filter && self.inner_has_layer_filter {
return Some(cmp::max(outer_hint?, inner_hint?));
}
if self.has_layer_filter && inner_hint.is_none() {
return None;
}
if self.inner_has_layer_filter && outer_hint.is_none() {
return None;
}
// If the layer is `Option::None`, then we
// want to short-circuit the layer underneath, if it
// returns `None`, to override the `None` layer returning
// `Some(OFF)`, which should ONLY apply when there are
// no other layers that return `None`. Note this
// `None` does not == `Some(TRACE)`, it means
// something more like: "whatever all the other
// layers agree on, default to `TRACE` if none
// have an opinion". We also choose do this AFTER
// we check for per-layer filters, which
// have their own logic.
//
// Also note that this does come at some perf cost, but
// this function is only called on initialization and
// subscriber reloading.
if super::layer_is_none(&self.layer) {
return cmp::max(outer_hint, Some(inner_hint?));
}
// Similarly, if the layer on the inside is `None` and it returned an
// `Off` hint, we want to override that with the outer hint.
if inner_is_none && inner_hint == Some(LevelFilter::OFF) {
return outer_hint;
}
cmp::max(outer_hint, inner_hint)
}
}
impl<A, B, S> fmt::Debug for Layered<A, B, S>
where
A: fmt::Debug,
B: fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
#[cfg(all(feature = "registry", feature = "std"))]
let alt = f.alternate();
let mut s = f.debug_struct("Layered");
// These additional fields are more verbose and usually only necessary
// for internal debugging purposes, so only print them if alternate mode
// is enabled.
#[cfg(all(feature = "registry", feature = "std"))]
{
if alt {
s.field("inner_is_registry", &self.inner_is_registry)
.field("has_layer_filter", &self.has_layer_filter)
.field("inner_has_layer_filter", &self.inner_has_layer_filter);
}
}
s.field("layer", &self.layer)
.field("inner", &self.inner)
.finish()
}
}