libm/math/atan.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
/* origin: FreeBSD /usr/src/lib/msun/src/s_atan.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* atan(x)
* Method
* 1. Reduce x to positive by atan(x) = -atan(-x).
* 2. According to the integer k=4t+0.25 chopped, t=x, the argument
* is further reduced to one of the following intervals and the
* arctangent of t is evaluated by the corresponding formula:
*
* [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
* [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
* [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
* [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
* [39/16,INF] atan(x) = atan(INF) + atan( -1/t )
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
use core::f64;
use super::fabs;
const ATANHI: [f64; 4] = [
4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */
7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */
9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */
1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */
];
const ATANLO: [f64; 4] = [
2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */
3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */
1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */
6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */
];
const AT: [f64; 11] = [
3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */
-1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */
1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */
-1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */
9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */
-7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */
6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */
-5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */
4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */
-3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */
1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */
];
/// Arctangent (f64)
///
/// Computes the inverse tangent (arc tangent) of the input value.
/// Returns a value in radians, in the range of -pi/2 to pi/2.
#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
pub fn atan(x: f64) -> f64 {
let mut x = x;
let mut ix = (x.to_bits() >> 32) as u32;
let sign = ix >> 31;
ix &= 0x7fff_ffff;
if ix >= 0x4410_0000 {
if x.is_nan() {
return x;
}
let z = ATANHI[3] + f64::from_bits(0x0380_0000); // 0x1p-120f
return if sign != 0 { -z } else { z };
}
let id = if ix < 0x3fdc_0000 {
/* |x| < 0.4375 */
if ix < 0x3e40_0000 {
/* |x| < 2^-27 */
if ix < 0x0010_0000 {
/* raise underflow for subnormal x */
force_eval!(x as f32);
}
return x;
}
-1
} else {
x = fabs(x);
if ix < 0x3ff30000 {
/* |x| < 1.1875 */
if ix < 0x3fe60000 {
/* 7/16 <= |x| < 11/16 */
x = (2. * x - 1.) / (2. + x);
0
} else {
/* 11/16 <= |x| < 19/16 */
x = (x - 1.) / (x + 1.);
1
}
} else if ix < 0x40038000 {
/* |x| < 2.4375 */
x = (x - 1.5) / (1. + 1.5 * x);
2
} else {
/* 2.4375 <= |x| < 2^66 */
x = -1. / x;
3
}
};
let z = x * x;
let w = z * z;
/* break sum from i=0 to 10 AT[i]z**(i+1) into odd and even poly */
let s1 = z * (AT[0] + w * (AT[2] + w * (AT[4] + w * (AT[6] + w * (AT[8] + w * AT[10])))));
let s2 = w * (AT[1] + w * (AT[3] + w * (AT[5] + w * (AT[7] + w * AT[9]))));
if id < 0 {
return x - x * (s1 + s2);
}
let z = i!(ATANHI, id as usize) - (x * (s1 + s2) - i!(ATANLO, id as usize) - x);
if sign != 0 { -z } else { z }
}
#[cfg(test)]
mod tests {
use core::f64;
use super::atan;
#[test]
fn sanity_check() {
for (input, answer) in [
(3.0_f64.sqrt() / 3.0, f64::consts::FRAC_PI_6),
(1.0, f64::consts::FRAC_PI_4),
(3.0_f64.sqrt(), f64::consts::FRAC_PI_3),
(-3.0_f64.sqrt() / 3.0, -f64::consts::FRAC_PI_6),
(-1.0, -f64::consts::FRAC_PI_4),
(-3.0_f64.sqrt(), -f64::consts::FRAC_PI_3),
]
.iter()
{
assert!(
(atan(*input) - answer) / answer < 1e-5,
"\natan({:.4}/16) = {:.4}, actual: {}",
input * 16.0,
answer,
atan(*input)
);
}
}
#[test]
fn zero() {
assert_eq!(atan(0.0), 0.0);
}
#[test]
fn infinity() {
assert_eq!(atan(f64::INFINITY), f64::consts::FRAC_PI_2);
}
#[test]
fn minus_infinity() {
assert_eq!(atan(f64::NEG_INFINITY), -f64::consts::FRAC_PI_2);
}
#[test]
fn nan() {
assert!(atan(f64::NAN).is_nan());
}
}