redb/
transactions.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
use crate::db::TransactionGuard;
use crate::error::CommitError;
use crate::multimap_table::ReadOnlyUntypedMultimapTable;
use crate::sealed::Sealed;
use crate::table::ReadOnlyUntypedTable;
use crate::transaction_tracker::{SavepointId, TransactionId, TransactionTracker};
use crate::tree_store::{
    Btree, BtreeHeader, BtreeMut, FreedPageList, FreedTableKey, InternalTableDefinition, Page,
    PageHint, PageNumber, SerializedSavepoint, TableTree, TableTreeMut, TableType,
    TransactionalMemory, MAX_PAIR_LENGTH, MAX_VALUE_LENGTH,
};
use crate::types::{Key, Value};
use crate::{
    AccessGuard, MultimapTable, MultimapTableDefinition, MultimapTableHandle, Range,
    ReadOnlyMultimapTable, ReadOnlyTable, Result, Savepoint, SavepointError, StorageError, Table,
    TableDefinition, TableError, TableHandle, TransactionError, TypeName,
    UntypedMultimapTableHandle, UntypedTableHandle,
};
#[cfg(feature = "logging")]
use log::{debug, warn};
use std::borrow::Borrow;
use std::cmp::min;
use std::collections::{BTreeMap, HashMap, HashSet};
use std::fmt::{Debug, Display, Formatter};
use std::marker::PhantomData;
use std::mem::size_of;
use std::ops::RangeBounds;
#[cfg(any(test, fuzzing))]
use std::ops::RangeFull;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::{Arc, Mutex};
use std::{panic, thread};

const MAX_PAGES_PER_COMPACTION: usize = 1_000_000;
const NEXT_SAVEPOINT_TABLE: SystemTableDefinition<(), SavepointId> =
    SystemTableDefinition::new("next_savepoint_id");
pub(crate) const SAVEPOINT_TABLE: SystemTableDefinition<SavepointId, SerializedSavepoint> =
    SystemTableDefinition::new("persistent_savepoints");
// The allocator state table is stored in the system table tree, but it's accessed using
// raw btree operations rather than open_system_table(), so there's no SystemTableDefinition
pub(crate) const ALLOCATOR_STATE_TABLE_NAME: &str = "allocator_state";
pub(crate) type AllocatorStateTree<'a> = BtreeMut<'a, AllocatorStateKey, &'static [u8]>;

#[derive(Copy, Clone, Ord, PartialOrd, Eq, PartialEq, Hash, Debug)]
pub(crate) enum AllocatorStateKey {
    Region(u32),
    RegionTracker,
    TransactionId,
}

impl Value for AllocatorStateKey {
    type SelfType<'a> = Self;
    type AsBytes<'a> = [u8; 1 + size_of::<u32>()];

    fn fixed_width() -> Option<usize> {
        Some(1 + size_of::<u32>())
    }

    fn from_bytes<'a>(data: &'a [u8]) -> Self::SelfType<'a>
    where
        Self: 'a,
    {
        match data[0] {
            0 => Self::Region(u32::from_le_bytes(data[1..].try_into().unwrap())),
            1 => Self::RegionTracker,
            2 => Self::TransactionId,
            _ => unreachable!(),
        }
    }

    fn as_bytes<'a, 'b: 'a>(value: &'a Self::SelfType<'b>) -> Self::AsBytes<'a>
    where
        Self: 'a,
        Self: 'b,
    {
        let mut result = Self::AsBytes::default();
        match value {
            Self::Region(region) => {
                result[0] = 0;
                result[1..].copy_from_slice(&u32::to_le_bytes(*region));
            }
            Self::RegionTracker => {
                result[0] = 1;
            }
            Self::TransactionId => {
                result[0] = 2;
            }
        }

        result
    }

    fn type_name() -> TypeName {
        TypeName::internal("redb::AllocatorStateKey")
    }
}

impl Key for AllocatorStateKey {
    fn compare(data1: &[u8], data2: &[u8]) -> std::cmp::Ordering {
        Self::from_bytes(data1).cmp(&Self::from_bytes(data2))
    }
}

pub struct SystemTableDefinition<'a, K: Key + 'static, V: Value + 'static> {
    name: &'a str,
    _key_type: PhantomData<K>,
    _value_type: PhantomData<V>,
}

impl<'a, K: Key + 'static, V: Value + 'static> SystemTableDefinition<'a, K, V> {
    pub const fn new(name: &'a str) -> Self {
        assert!(!name.is_empty());
        Self {
            name,
            _key_type: PhantomData,
            _value_type: PhantomData,
        }
    }
}

impl<'a, K: Key + 'static, V: Value + 'static> TableHandle for SystemTableDefinition<'a, K, V> {
    fn name(&self) -> &str {
        self.name
    }
}

impl<K: Key, V: Value> Sealed for SystemTableDefinition<'_, K, V> {}

impl<'a, K: Key + 'static, V: Value + 'static> Clone for SystemTableDefinition<'a, K, V> {
    fn clone(&self) -> Self {
        *self
    }
}

impl<'a, K: Key + 'static, V: Value + 'static> Copy for SystemTableDefinition<'a, K, V> {}

impl<'a, K: Key + 'static, V: Value + 'static> Display for SystemTableDefinition<'a, K, V> {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        write!(
            f,
            "{}<{}, {}>",
            self.name,
            K::type_name().name(),
            V::type_name().name()
        )
    }
}

/// Informational storage stats about the database
#[derive(Debug)]
pub struct DatabaseStats {
    pub(crate) tree_height: u32,
    pub(crate) allocated_pages: u64,
    pub(crate) leaf_pages: u64,
    pub(crate) branch_pages: u64,
    pub(crate) stored_leaf_bytes: u64,
    pub(crate) metadata_bytes: u64,
    pub(crate) fragmented_bytes: u64,
    pub(crate) page_size: usize,
}

impl DatabaseStats {
    /// Maximum traversal distance to reach the deepest (key, value) pair, across all tables
    pub fn tree_height(&self) -> u32 {
        self.tree_height
    }

    /// Number of pages allocated
    pub fn allocated_pages(&self) -> u64 {
        self.allocated_pages
    }

    /// Number of leaf pages that store user data
    pub fn leaf_pages(&self) -> u64 {
        self.leaf_pages
    }

    /// Number of branch pages in btrees that store user data
    pub fn branch_pages(&self) -> u64 {
        self.branch_pages
    }

    /// Number of bytes consumed by keys and values that have been inserted.
    /// Does not include indexing overhead
    pub fn stored_bytes(&self) -> u64 {
        self.stored_leaf_bytes
    }

    /// Number of bytes consumed by keys in internal branch pages, plus other metadata
    pub fn metadata_bytes(&self) -> u64 {
        self.metadata_bytes
    }

    /// Number of bytes consumed by fragmentation, both in data pages and internal metadata tables
    pub fn fragmented_bytes(&self) -> u64 {
        self.fragmented_bytes
    }

    /// Number of bytes per page
    pub fn page_size(&self) -> usize {
        self.page_size
    }
}

#[derive(Copy, Clone, Debug)]
#[non_exhaustive]
pub enum Durability {
    /// Commits with this durability level will not be persisted to disk unless followed by a
    /// commit with a higher durability level.
    ///
    /// Note: Pages are only freed during commits with higher durability levels. Exclusively using
    /// this durability level will result in rapid growth of the database file.
    None,
    /// Commits with this durability level have been queued for persitance to disk, and should be
    /// persistent some time after [`WriteTransaction::commit`] returns.
    Eventual,
    /// Commits with this durability level are guaranteed to be persistent as soon as
    /// [`WriteTransaction::commit`] returns.
    Immediate,
    /// This is identical to `Durability::Immediate`, but also enables 2-phase commit. New code
    /// should call `set_two_phase_commit(true)` directly instead.
    #[deprecated(since = "2.3.0", note = "use set_two_phase_commit(true) instead")]
    Paranoid,
}

// These are the actual durability levels used internally. `Durability::Paranoid` is translated
// to `InternalDurability::Immediate`, and also enables 2-phase commit
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum InternalDurability {
    None,
    Eventual,
    Immediate,
}

// Like a Table but only one may be open at a time to avoid possible races
pub struct SystemTable<'db, 's, K: Key + 'static, V: Value + 'static> {
    name: String,
    namespace: &'s mut SystemNamespace<'db>,
    tree: BtreeMut<'s, K, V>,
    transaction_guard: Arc<TransactionGuard>,
}

impl<'db, 's, K: Key + 'static, V: Value + 'static> SystemTable<'db, 's, K, V> {
    fn new(
        name: &str,
        table_root: Option<BtreeHeader>,
        freed_pages: Arc<Mutex<Vec<PageNumber>>>,
        guard: Arc<TransactionGuard>,
        mem: Arc<TransactionalMemory>,
        namespace: &'s mut SystemNamespace<'db>,
    ) -> SystemTable<'db, 's, K, V> {
        SystemTable {
            name: name.to_string(),
            namespace,
            tree: BtreeMut::new(table_root, guard.clone(), mem, freed_pages),
            transaction_guard: guard,
        }
    }

    fn get<'a>(&self, key: impl Borrow<K::SelfType<'a>>) -> Result<Option<AccessGuard<V>>>
    where
        K: 'a,
    {
        self.tree.get(key.borrow())
    }

    fn range<'a, KR>(&self, range: impl RangeBounds<KR> + 'a) -> Result<Range<K, V>>
    where
        K: 'a,
        KR: Borrow<K::SelfType<'a>> + 'a,
    {
        self.tree
            .range(&range)
            .map(|x| Range::new(x, self.transaction_guard.clone()))
    }

    pub fn insert<'k, 'v>(
        &mut self,
        key: impl Borrow<K::SelfType<'k>>,
        value: impl Borrow<V::SelfType<'v>>,
    ) -> Result<Option<AccessGuard<V>>> {
        let value_len = V::as_bytes(value.borrow()).as_ref().len();
        if value_len > MAX_VALUE_LENGTH {
            return Err(StorageError::ValueTooLarge(value_len));
        }
        let key_len = K::as_bytes(key.borrow()).as_ref().len();
        if key_len > MAX_VALUE_LENGTH {
            return Err(StorageError::ValueTooLarge(key_len));
        }
        if value_len + key_len > MAX_PAIR_LENGTH {
            return Err(StorageError::ValueTooLarge(value_len + key_len));
        }
        self.tree.insert(key.borrow(), value.borrow())
    }

    pub fn remove<'a>(
        &mut self,
        key: impl Borrow<K::SelfType<'a>>,
    ) -> Result<Option<AccessGuard<V>>>
    where
        K: 'a,
    {
        self.tree.remove(key.borrow())
    }
}

impl<'db, 's, K: Key + 'static, V: Value + 'static> Drop for SystemTable<'db, 's, K, V> {
    fn drop(&mut self) {
        self.namespace.close_table(
            &self.name,
            &self.tree,
            self.tree.get_root().map(|x| x.length).unwrap_or_default(),
        );
    }
}

struct SystemNamespace<'db> {
    table_tree: TableTreeMut<'db>,
    transaction_guard: Arc<TransactionGuard>,
}

impl<'db> SystemNamespace<'db> {
    fn open_system_table<'txn, 's, K: Key + 'static, V: Value + 'static>(
        &'s mut self,
        transaction: &'txn WriteTransaction,
        definition: SystemTableDefinition<K, V>,
    ) -> Result<SystemTable<'db, 's, K, V>> {
        #[cfg(feature = "logging")]
        debug!("Opening system table: {}", definition);
        let (root, _) = self
            .table_tree
            .get_or_create_table::<K, V>(definition.name(), TableType::Normal)
            .map_err(|e| {
                e.into_storage_error_or_corrupted("Internal error. System table is corrupted")
            })?;
        transaction.dirty.store(true, Ordering::Release);

        Ok(SystemTable::new(
            definition.name(),
            root,
            transaction.freed_pages.clone(),
            self.transaction_guard.clone(),
            transaction.mem.clone(),
            self,
        ))
    }

    fn close_table<K: Key + 'static, V: Value + 'static>(
        &mut self,
        name: &str,
        table: &BtreeMut<K, V>,
        length: u64,
    ) {
        self.table_tree
            .stage_update_table_root(name, table.get_root(), length);
    }
}

struct TableNamespace<'db> {
    open_tables: HashMap<String, &'static panic::Location<'static>>,
    table_tree: TableTreeMut<'db>,
}

impl<'db> TableNamespace<'db> {
    #[track_caller]
    fn inner_open<K: Key + 'static, V: Value + 'static>(
        &mut self,
        name: &str,
        table_type: TableType,
    ) -> Result<(Option<BtreeHeader>, u64), TableError> {
        if let Some(location) = self.open_tables.get(name) {
            return Err(TableError::TableAlreadyOpen(name.to_string(), location));
        }

        let root = self
            .table_tree
            .get_or_create_table::<K, V>(name, table_type)?;
        self.open_tables
            .insert(name.to_string(), panic::Location::caller());

        Ok(root)
    }

    #[track_caller]
    pub fn open_multimap_table<'txn, K: Key + 'static, V: Key + 'static>(
        &mut self,
        transaction: &'txn WriteTransaction,
        definition: MultimapTableDefinition<K, V>,
    ) -> Result<MultimapTable<'txn, K, V>, TableError> {
        #[cfg(feature = "logging")]
        debug!("Opening multimap table: {}", definition);
        let (root, length) = self.inner_open::<K, V>(definition.name(), TableType::Multimap)?;
        transaction.dirty.store(true, Ordering::Release);

        Ok(MultimapTable::new(
            definition.name(),
            root,
            length,
            transaction.freed_pages.clone(),
            transaction.mem.clone(),
            transaction,
        ))
    }

    #[track_caller]
    pub fn open_table<'txn, K: Key + 'static, V: Value + 'static>(
        &mut self,
        transaction: &'txn WriteTransaction,
        definition: TableDefinition<K, V>,
    ) -> Result<Table<'txn, K, V>, TableError> {
        #[cfg(feature = "logging")]
        debug!("Opening table: {}", definition);
        let (root, _) = self.inner_open::<K, V>(definition.name(), TableType::Normal)?;
        transaction.dirty.store(true, Ordering::Release);

        Ok(Table::new(
            definition.name(),
            root,
            transaction.freed_pages.clone(),
            transaction.mem.clone(),
            transaction,
        ))
    }

    #[track_caller]
    fn inner_delete(&mut self, name: &str, table_type: TableType) -> Result<bool, TableError> {
        if let Some(location) = self.open_tables.get(name) {
            return Err(TableError::TableAlreadyOpen(name.to_string(), location));
        }

        self.table_tree.delete_table(name, table_type)
    }

    #[track_caller]
    fn delete_table(
        &mut self,
        transaction: &WriteTransaction,
        name: &str,
    ) -> Result<bool, TableError> {
        #[cfg(feature = "logging")]
        debug!("Deleting table: {}", name);
        transaction.dirty.store(true, Ordering::Release);
        self.inner_delete(name, TableType::Normal)
    }

    #[track_caller]
    fn delete_multimap_table(
        &mut self,
        transaction: &WriteTransaction,
        name: &str,
    ) -> Result<bool, TableError> {
        #[cfg(feature = "logging")]
        debug!("Deleting multimap table: {}", name);
        transaction.dirty.store(true, Ordering::Release);
        self.inner_delete(name, TableType::Multimap)
    }

    pub(crate) fn close_table<K: Key + 'static, V: Value + 'static>(
        &mut self,
        name: &str,
        table: &BtreeMut<K, V>,
        length: u64,
    ) {
        self.open_tables.remove(name).unwrap();
        self.table_tree
            .stage_update_table_root(name, table.get_root(), length);
    }
}

/// A read/write transaction
///
/// Only a single [`WriteTransaction`] may exist at a time
pub struct WriteTransaction {
    transaction_tracker: Arc<TransactionTracker>,
    mem: Arc<TransactionalMemory>,
    transaction_guard: Arc<TransactionGuard>,
    transaction_id: TransactionId,
    // The table of freed pages by transaction. FreedTableKey -> binary.
    // The binary blob is a length-prefixed array of PageNumber
    freed_tree: Mutex<BtreeMut<'static, FreedTableKey, FreedPageList<'static>>>,
    freed_pages: Arc<Mutex<Vec<PageNumber>>>,
    // Pages that were freed from the freed-tree. These can be freed immediately after commit(),
    // since read transactions do not access the freed-tree
    post_commit_frees: Arc<Mutex<Vec<PageNumber>>>,
    tables: Mutex<TableNamespace<'static>>,
    system_tables: Mutex<SystemNamespace<'static>>,
    completed: bool,
    dirty: AtomicBool,
    durability: InternalDurability,
    two_phase_commit: bool,
    quick_repair: bool,
    // Persistent savepoints created during this transaction
    created_persistent_savepoints: Mutex<HashSet<SavepointId>>,
    deleted_persistent_savepoints: Mutex<Vec<(SavepointId, TransactionId)>>,
}

impl WriteTransaction {
    pub(crate) fn new(
        guard: TransactionGuard,
        transaction_tracker: Arc<TransactionTracker>,
        mem: Arc<TransactionalMemory>,
    ) -> Result<Self> {
        let transaction_id = guard.id();
        let guard = Arc::new(guard);

        let root_page = mem.get_data_root();
        let system_page = mem.get_system_root();
        let freed_root = mem.get_freed_root();
        let freed_pages = Arc::new(Mutex::new(vec![]));
        let post_commit_frees = Arc::new(Mutex::new(vec![]));

        let tables = TableNamespace {
            open_tables: Default::default(),
            table_tree: TableTreeMut::new(
                root_page,
                guard.clone(),
                mem.clone(),
                freed_pages.clone(),
            ),
        };
        let system_tables = SystemNamespace {
            table_tree: TableTreeMut::new(
                system_page,
                guard.clone(),
                mem.clone(),
                freed_pages.clone(),
            ),
            transaction_guard: guard.clone(),
        };

        Ok(Self {
            transaction_tracker,
            mem: mem.clone(),
            transaction_guard: guard.clone(),
            transaction_id,
            tables: Mutex::new(tables),
            system_tables: Mutex::new(system_tables),
            freed_tree: Mutex::new(BtreeMut::new(
                freed_root,
                guard,
                mem,
                post_commit_frees.clone(),
            )),
            freed_pages,
            post_commit_frees,
            completed: false,
            dirty: AtomicBool::new(false),
            durability: InternalDurability::Immediate,
            two_phase_commit: false,
            quick_repair: false,
            created_persistent_savepoints: Mutex::new(Default::default()),
            deleted_persistent_savepoints: Mutex::new(vec![]),
        })
    }

    #[cfg(any(test, fuzzing))]
    pub fn print_allocated_page_debug(&self) {
        let mut all_allocated: HashSet<PageNumber> =
            HashSet::from_iter(self.mem.all_allocated_pages());

        let tracker = self.mem.tracker_page();
        all_allocated.remove(&tracker);
        println!("Tracker page");
        println!("{tracker:?}");

        let table_allocators = self
            .tables
            .lock()
            .unwrap()
            .table_tree
            .all_referenced_pages()
            .unwrap();
        let mut table_pages = vec![];
        for (i, allocator) in table_allocators.iter().enumerate() {
            allocator.get_allocated_pages(i.try_into().unwrap(), &mut table_pages);
        }
        println!("Tables");
        for p in table_pages {
            all_allocated.remove(&p);
            println!("{p:?}");
        }

        let system_table_allocators = self
            .system_tables
            .lock()
            .unwrap()
            .table_tree
            .all_referenced_pages()
            .unwrap();
        let mut system_table_pages = vec![];
        for (i, allocator) in system_table_allocators.iter().enumerate() {
            allocator.get_allocated_pages(i.try_into().unwrap(), &mut system_table_pages);
        }
        println!("System tables");
        for p in system_table_pages {
            all_allocated.remove(&p);
            println!("{p:?}");
        }

        println!("Free table");
        if let Some(freed_iter) = self.freed_tree.lock().unwrap().all_pages_iter().unwrap() {
            for p in freed_iter {
                let p = p.unwrap();
                all_allocated.remove(&p);
                println!("{p:?}");
            }
        }
        println!("Pending free (i.e. in freed table)");
        for entry in self
            .freed_tree
            .lock()
            .unwrap()
            .range::<RangeFull, FreedTableKey>(&(..))
            .unwrap()
        {
            let entry = entry.unwrap();
            let value = entry.value();
            for i in 0..value.len() {
                let p = value.get(i);
                all_allocated.remove(&p);
                println!("{p:?}");
            }
        }
        if !all_allocated.is_empty() {
            println!("Leaked pages");
            for p in all_allocated {
                println!("{p:?}");
            }
        }
    }

    /// Creates a snapshot of the current database state, which can be used to rollback the database.
    /// This savepoint will exist until it is deleted with `[delete_savepoint()]`.
    ///
    /// Note that while a savepoint exists, pages that become unused after it was created are not freed.
    /// Therefore, the lifetime of a savepoint should be minimized.
    ///
    /// Returns `[SavepointError::InvalidSavepoint`], if the transaction is "dirty" (any tables have been opened)
    /// or if the transaction's durability is less than `[Durability::Immediate]`
    pub fn persistent_savepoint(&self) -> Result<u64, SavepointError> {
        if self.durability != InternalDurability::Immediate {
            return Err(SavepointError::InvalidSavepoint);
        }

        let mut savepoint = self.ephemeral_savepoint()?;

        let mut system_tables = self.system_tables.lock().unwrap();

        let mut next_table = system_tables.open_system_table(self, NEXT_SAVEPOINT_TABLE)?;
        next_table.insert((), savepoint.get_id().next())?;
        drop(next_table);

        let mut savepoint_table = system_tables.open_system_table(self, SAVEPOINT_TABLE)?;
        savepoint_table.insert(
            savepoint.get_id(),
            SerializedSavepoint::from_savepoint(&savepoint),
        )?;

        savepoint.set_persistent();

        self.created_persistent_savepoints
            .lock()
            .unwrap()
            .insert(savepoint.get_id());

        Ok(savepoint.get_id().0)
    }

    pub(crate) fn transaction_guard(&self) -> Arc<TransactionGuard> {
        self.transaction_guard.clone()
    }

    pub(crate) fn next_persistent_savepoint_id(&self) -> Result<Option<SavepointId>> {
        let mut system_tables = self.system_tables.lock().unwrap();
        let next_table = system_tables.open_system_table(self, NEXT_SAVEPOINT_TABLE)?;
        let value = next_table.get(())?;
        if let Some(next_id) = value {
            Ok(Some(next_id.value()))
        } else {
            Ok(None)
        }
    }

    /// Get a persistent savepoint given its id
    pub fn get_persistent_savepoint(&self, id: u64) -> Result<Savepoint, SavepointError> {
        let mut system_tables = self.system_tables.lock().unwrap();
        let table = system_tables.open_system_table(self, SAVEPOINT_TABLE)?;
        let value = table.get(SavepointId(id))?;

        value
            .map(|x| x.value().to_savepoint(self.transaction_tracker.clone()))
            .ok_or(SavepointError::InvalidSavepoint)
    }

    /// Delete the given persistent savepoint.
    ///
    /// Note that if the transaction is `abort()`'ed this deletion will be rolled back.
    ///
    /// Returns `true` if the savepoint existed
    /// Returns `[SavepointError::InvalidSavepoint`] if the transaction's durability is less than `[Durability::Immediate]`
    pub fn delete_persistent_savepoint(&self, id: u64) -> Result<bool, SavepointError> {
        if self.durability != InternalDurability::Immediate {
            return Err(SavepointError::InvalidSavepoint);
        }
        let mut system_tables = self.system_tables.lock().unwrap();
        let mut table = system_tables.open_system_table(self, SAVEPOINT_TABLE)?;
        let savepoint = table.remove(SavepointId(id))?;
        if let Some(serialized) = savepoint {
            let savepoint = serialized
                .value()
                .to_savepoint(self.transaction_tracker.clone());
            self.deleted_persistent_savepoints
                .lock()
                .unwrap()
                .push((savepoint.get_id(), savepoint.get_transaction_id()));
            Ok(true)
        } else {
            Ok(false)
        }
    }

    /// List all persistent savepoints
    pub fn list_persistent_savepoints(&self) -> Result<impl Iterator<Item = u64>> {
        let mut system_tables = self.system_tables.lock().unwrap();
        let table = system_tables.open_system_table(self, SAVEPOINT_TABLE)?;
        let mut savepoints = vec![];
        for savepoint in table.range::<SavepointId>(..)? {
            savepoints.push(savepoint?.0.value().0);
        }
        Ok(savepoints.into_iter())
    }

    // TODO: deduplicate this with the one in Database
    fn allocate_read_transaction(&self) -> Result<TransactionGuard> {
        let id = self
            .transaction_tracker
            .register_read_transaction(&self.mem)?;

        Ok(TransactionGuard::new_read(
            id,
            self.transaction_tracker.clone(),
        ))
    }

    fn allocate_savepoint(&self) -> Result<(SavepointId, TransactionId)> {
        let id = self.transaction_tracker.allocate_savepoint();
        Ok((id, self.allocate_read_transaction()?.leak()))
    }

    /// Creates a snapshot of the current database state, which can be used to rollback the database
    ///
    /// This savepoint will be freed as soon as the returned `[Savepoint]` is dropped.
    ///
    /// Returns `[SavepointError::InvalidSavepoint`], if the transaction is "dirty" (any tables have been opened)
    pub fn ephemeral_savepoint(&self) -> Result<Savepoint, SavepointError> {
        if self.dirty.load(Ordering::Acquire) {
            return Err(SavepointError::InvalidSavepoint);
        }

        let (id, transaction_id) = self.allocate_savepoint()?;
        #[cfg(feature = "logging")]
        debug!(
            "Creating savepoint id={:?}, txn_id={:?}",
            id, transaction_id
        );

        let regional_allocators = self.mem.get_raw_allocator_states();
        let root = self.mem.get_data_root();
        let system_root = self.mem.get_system_root();
        let freed_root = self.mem.get_freed_root();
        let savepoint = Savepoint::new_ephemeral(
            &self.mem,
            self.transaction_tracker.clone(),
            id,
            transaction_id,
            root,
            system_root,
            freed_root,
            regional_allocators,
        );

        Ok(savepoint)
    }

    /// Restore the state of the database to the given [`Savepoint`]
    ///
    /// Calling this method invalidates all [`Savepoint`]s created after savepoint
    pub fn restore_savepoint(&mut self, savepoint: &Savepoint) -> Result<(), SavepointError> {
        // Ensure that user does not try to restore a Savepoint that is from a different Database
        assert_eq!(
            std::ptr::from_ref(self.transaction_tracker.as_ref()),
            savepoint.db_address()
        );

        if !self
            .transaction_tracker
            .is_valid_savepoint(savepoint.get_id())
        {
            return Err(SavepointError::InvalidSavepoint);
        }
        #[cfg(feature = "logging")]
        debug!(
            "Beginning savepoint restore (id={:?}) in transaction id={:?}",
            savepoint.get_id(),
            self.transaction_id
        );
        // Restoring a savepoint that reverted a file format or checksum type change could corrupt
        // the database
        assert_eq!(self.mem.get_version(), savepoint.get_version());
        self.dirty.store(true, Ordering::Release);

        // Restoring a savepoint needs to accomplish the following:
        // 1) restore the table tree. This is trivial, since we have the old root
        // 1a) we also filter the freed tree to remove any pages referenced by the old root
        // 2) free all pages that were allocated since the savepoint and are unreachable
        //    from the restored table tree root. Here we diff the reachable pages from the old
        //    and new roots
        // 3) update the system tree to remove invalid persistent savepoints.

        let old_table_tree = TableTreeMut::new(
            savepoint.get_user_root(),
            self.transaction_guard.clone(),
            self.mem.clone(),
            self.freed_pages.clone(),
        );
        // TODO: traversing these can be very slow in a large database. Speed this up.
        let current_root_pages = self
            .tables
            .lock()
            .unwrap()
            .table_tree
            .all_referenced_pages()?;
        let old_root_pages = old_table_tree.all_referenced_pages()?;

        // 1) restore the table tree
        self.tables.lock().unwrap().table_tree = TableTreeMut::new(
            savepoint.get_user_root(),
            self.transaction_guard.clone(),
            self.mem.clone(),
            self.freed_pages.clone(),
        );

        // 1a) filter any pages referenced by the old data root to bring them back to the committed state
        let mut txn_id = savepoint.get_transaction_id().raw_id();
        let mut freed_tree = self.freed_tree.lock().unwrap();
        loop {
            let lower = FreedTableKey {
                transaction_id: txn_id,
                pagination_id: 0,
            };

            if freed_tree.range(&(lower..))?.next().is_none() {
                break;
            }
            let lower = FreedTableKey {
                transaction_id: txn_id,
                pagination_id: 0,
            };
            let upper = FreedTableKey {
                transaction_id: txn_id + 1,
                pagination_id: 0,
            };

            // Find all the pending pages for this txn and filter them
            let mut pending_pages = vec![];
            for entry in freed_tree.extract_from_if(&(lower..upper), |_, _| true)? {
                let item = entry?;
                for i in 0..item.value().len() {
                    let p = item.value().get(i);
                    if !old_root_pages[p.region as usize].is_allocated(p.page_index, p.page_order) {
                        pending_pages.push(p);
                    }
                }
            }

            let mut pagination_counter = 0u64;
            while !pending_pages.is_empty() {
                let chunk_size = 100;
                let buffer_size = FreedPageList::required_bytes(chunk_size);
                let key = FreedTableKey {
                    transaction_id: txn_id,
                    pagination_id: pagination_counter,
                };
                let mut access_guard =
                    freed_tree.insert_reserve(&key, buffer_size.try_into().unwrap())?;

                let len = pending_pages.len();
                access_guard.as_mut().clear();
                for page in pending_pages.drain(len - min(len, chunk_size)..) {
                    access_guard.as_mut().push_back(page);
                }
                drop(access_guard);

                pagination_counter += 1;
            }

            txn_id += 1;
        }

        // 2) free all pages that became unreachable
        let mut freed_pages = self.freed_pages.lock().unwrap();
        for i in 0..current_root_pages.len() {
            let mut pages = vec![];
            current_root_pages[i].difference(i.try_into().unwrap(), &old_root_pages[i], &mut pages);
            for page in pages {
                if self.mem.uncommitted(page) {
                    self.mem.free(page);
                } else {
                    freed_pages.push(page);
                }
            }
        }
        drop(freed_pages);

        // 3) Invalidate all savepoints that are newer than the one being applied to prevent the user
        // from later trying to restore a savepoint "on another timeline"
        self.transaction_tracker
            .invalidate_savepoints_after(savepoint.get_id());
        for persistent_savepoint in self.list_persistent_savepoints()? {
            if persistent_savepoint > savepoint.get_id().0 {
                self.delete_persistent_savepoint(persistent_savepoint)?;
            }
        }

        Ok(())
    }

    /// Set the desired durability level for writes made in this transaction
    /// Defaults to [`Durability::Immediate`]
    ///
    /// Will panic if the durability is reduced below `[Durability::Immediate]` after a persistent savepoint has been created or deleted.
    pub fn set_durability(&mut self, durability: Durability) {
        let no_created = self
            .created_persistent_savepoints
            .lock()
            .unwrap()
            .is_empty();
        let no_deleted = self
            .deleted_persistent_savepoints
            .lock()
            .unwrap()
            .is_empty();
        assert!(no_created && no_deleted);

        self.durability = match durability {
            Durability::None => InternalDurability::None,
            Durability::Eventual => InternalDurability::Eventual,
            Durability::Immediate => InternalDurability::Immediate,
            #[allow(deprecated)]
            Durability::Paranoid => {
                self.set_two_phase_commit(true);
                InternalDurability::Immediate
            }
        };
    }

    /// Enable or disable 2-phase commit (defaults to disabled)
    ///
    /// By default, data is written using the following 1-phase commit algorithm:
    ///
    /// 1. Update the inactive commit slot with the new database state
    /// 2. Flip the god byte primary bit to activate the newly updated commit slot
    /// 3. Call `fsync` to ensure all writes have been persisted to disk
    ///
    /// All data is written with checksums. When opening the database after a crash, the most
    /// recent of the two commit slots with a valid checksum is used.
    ///
    /// Security considerations: The checksum used is xxhash, a fast, non-cryptographic hash
    /// function with close to perfect collision resistance when used with non-malicious input. An
    /// attacker with an extremely high degree of control over the database's workload, including
    /// the ability to cause the database process to crash, can cause invalid data to be written
    /// with a valid checksum, leaving the database in an invalid, attacker-controlled state.
    ///
    /// Alternatively, you can enable 2-phase commit, which writes data like this:
    ///
    /// 1. Update the inactive commit slot with the new database state
    /// 2. Call `fsync` to ensure the database slate and commit slot update have been persisted
    /// 3. Flip the god byte primary bit to activate the newly updated commit slot
    /// 4. Call `fsync` to ensure the write to the god byte has been persisted
    ///
    /// This mitigates a theoretical attack where an attacker who
    /// 1. can control the order in which pages are flushed to disk
    /// 2. can introduce crashes during `fsync`,
    /// 3. has knowledge of the database file contents, and
    /// 4. can include arbitrary data in a write transaction
    ///
    /// could cause a transaction to partially commit (some but not all of the data is written).
    /// This is described in the design doc in futher detail.
    ///
    /// Security considerations: Many hard disk drives and SSDs do not actually guarantee that data
    /// has been persisted to disk after calling `fsync`. Even with 2-phase commit, an attacker with
    /// a high degree of control over the database's workload, including the ability to cause the
    /// database process to crash, can cause the database to crash with the god byte primary bit
    /// pointing to an invalid commit slot, leaving the database in an invalid, potentially attacker-
    /// controlled state.
    pub fn set_two_phase_commit(&mut self, enabled: bool) {
        self.two_phase_commit = enabled;
    }

    /// Enable or disable quick-repair (defaults to disabled)
    ///
    /// By default, when reopening the database after a crash, redb needs to do a full repair.
    /// This involves walking the entire database to verify the checksums and reconstruct the
    /// allocator state, so it can be very slow if the database is large.
    ///
    /// Alternatively, you can enable quick-repair. In this mode, redb saves the allocator state
    /// as part of each commit (so it doesn't need to be reconstructed), and enables 2-phase commit
    /// (which guarantees that the primary commit slot is valid without needing to look at the
    /// checksums). This means commits are slower, but recovery after a crash is almost instant.
    pub fn set_quick_repair(&mut self, enabled: bool) {
        self.quick_repair = enabled;
    }

    /// Open the given table
    ///
    /// The table will be created if it does not exist
    #[track_caller]
    pub fn open_table<'txn, K: Key + 'static, V: Value + 'static>(
        &'txn self,
        definition: TableDefinition<K, V>,
    ) -> Result<Table<'txn, K, V>, TableError> {
        self.tables.lock().unwrap().open_table(self, definition)
    }

    /// Open the given table
    ///
    /// The table will be created if it does not exist
    #[track_caller]
    pub fn open_multimap_table<'txn, K: Key + 'static, V: Key + 'static>(
        &'txn self,
        definition: MultimapTableDefinition<K, V>,
    ) -> Result<MultimapTable<'txn, K, V>, TableError> {
        self.tables
            .lock()
            .unwrap()
            .open_multimap_table(self, definition)
    }

    pub(crate) fn close_table<K: Key + 'static, V: Value + 'static>(
        &self,
        name: &str,
        table: &BtreeMut<K, V>,
        length: u64,
    ) {
        self.tables.lock().unwrap().close_table(name, table, length);
    }

    /// Delete the given table
    ///
    /// Returns a bool indicating whether the table existed
    pub fn delete_table(&self, definition: impl TableHandle) -> Result<bool, TableError> {
        let name = definition.name().to_string();
        // Drop the definition so that callers can pass in a `Table` or `MultimapTable` to delete, without getting a TableAlreadyOpen error
        drop(definition);
        self.tables.lock().unwrap().delete_table(self, &name)
    }

    /// Delete the given table
    ///
    /// Returns a bool indicating whether the table existed
    pub fn delete_multimap_table(
        &self,
        definition: impl MultimapTableHandle,
    ) -> Result<bool, TableError> {
        let name = definition.name().to_string();
        // Drop the definition so that callers can pass in a `Table` or `MultimapTable` to delete, without getting a TableAlreadyOpen error
        drop(definition);
        self.tables
            .lock()
            .unwrap()
            .delete_multimap_table(self, &name)
    }

    /// List all the tables
    pub fn list_tables(&self) -> Result<impl Iterator<Item = UntypedTableHandle> + '_> {
        self.tables
            .lock()
            .unwrap()
            .table_tree
            .list_tables(TableType::Normal)
            .map(|x| x.into_iter().map(UntypedTableHandle::new))
    }

    /// List all the multimap tables
    pub fn list_multimap_tables(
        &self,
    ) -> Result<impl Iterator<Item = UntypedMultimapTableHandle> + '_> {
        self.tables
            .lock()
            .unwrap()
            .table_tree
            .list_tables(TableType::Multimap)
            .map(|x| x.into_iter().map(UntypedMultimapTableHandle::new))
    }

    /// Commit the transaction
    ///
    /// All writes performed in this transaction will be visible to future transactions, and are
    /// durable as consistent with the [`Durability`] level set by [`Self::set_durability`]
    pub fn commit(mut self) -> Result<(), CommitError> {
        // Set completed flag first, so that we don't go through the abort() path on drop, if this fails
        self.completed = true;
        self.commit_inner()
    }

    fn commit_inner(&mut self) -> Result<(), CommitError> {
        // Quick-repair requires 2-phase commit
        if self.quick_repair {
            self.two_phase_commit = true;
        }

        #[cfg(feature = "logging")]
        debug!(
            "Committing transaction id={:?} with durability={:?} two_phase={} quick_repair={}",
            self.transaction_id, self.durability, self.two_phase_commit, self.quick_repair
        );
        match self.durability {
            InternalDurability::None => self.non_durable_commit()?,
            InternalDurability::Eventual => self.durable_commit(true)?,
            InternalDurability::Immediate => self.durable_commit(false)?,
        }

        for (savepoint, transaction) in self.deleted_persistent_savepoints.lock().unwrap().iter() {
            self.transaction_tracker
                .deallocate_savepoint(*savepoint, *transaction);
        }

        #[cfg(feature = "logging")]
        debug!(
            "Finished commit of transaction id={:?}",
            self.transaction_id
        );

        Ok(())
    }

    /// Abort the transaction
    ///
    /// All writes performed in this transaction will be rolled back
    pub fn abort(mut self) -> Result {
        // Set completed flag first, so that we don't go through the abort() path on drop, if this fails
        self.completed = true;
        self.abort_inner()
    }

    fn abort_inner(&mut self) -> Result {
        #[cfg(feature = "logging")]
        debug!("Aborting transaction id={:?}", self.transaction_id);
        for savepoint in self.created_persistent_savepoints.lock().unwrap().iter() {
            match self.delete_persistent_savepoint(savepoint.0) {
                Ok(_) => {}
                Err(err) => match err {
                    SavepointError::InvalidSavepoint => {
                        unreachable!();
                    }
                    SavepointError::Storage(storage_err) => {
                        return Err(storage_err);
                    }
                },
            }
        }
        self.tables
            .lock()
            .unwrap()
            .table_tree
            .clear_table_root_updates();
        self.mem.rollback_uncommitted_writes()?;
        #[cfg(feature = "logging")]
        debug!("Finished abort of transaction id={:?}", self.transaction_id);
        Ok(())
    }

    pub(crate) fn durable_commit(&mut self, eventual: bool) -> Result {
        let free_until_transaction = self
            .transaction_tracker
            .oldest_live_read_transaction()
            .map_or(self.transaction_id, |x| x.next());
        self.process_freed_pages(free_until_transaction)?;

        let user_root = self
            .tables
            .lock()
            .unwrap()
            .table_tree
            .flush_table_root_updates()?
            .finalize_dirty_checksums()?;

        let mut system_tables = self.system_tables.lock().unwrap();
        let system_tree = system_tables.table_tree.flush_table_root_updates()?;
        system_tree
            .delete_table(ALLOCATOR_STATE_TABLE_NAME, TableType::Normal)
            .map_err(|e| e.into_storage_error_or_corrupted("Unexpected TableError"))?;

        if self.quick_repair {
            system_tree.create_table_and_flush_table_root(
                ALLOCATOR_STATE_TABLE_NAME,
                |tree: &mut AllocatorStateTree| {
                    let mut pagination_counter = 0;

                    loop {
                        let num_regions = self
                            .mem
                            .reserve_allocator_state(tree, self.transaction_id)?;

                        // We can't free pages after the commit, because that would invalidate our
                        // saved allocator state. Everything needs to go through the transactional
                        // free mechanism
                        self.store_freed_pages(&mut pagination_counter, true)?;

                        if self.mem.try_save_allocator_state(tree, num_regions)? {
                            return Ok(());
                        }

                        // Clear out the table before retrying, just in case the number of regions
                        // has somehow shrunk. Don't use retain_in() for this, since it doesn't
                        // free the pages immediately -- we need to reuse those pages to guarantee
                        // that our retry loop will eventually terminate
                        while let Some(guards) = tree.last()? {
                            let key = guards.0.value();
                            drop(guards);
                            tree.remove(&key)?;
                        }
                    }
                },
            )?;
        } else {
            // If a savepoint exists it might reference the freed-tree, since it holds a reference to the
            // root of the freed-tree. Therefore, we must use the transactional free mechanism to free
            // those pages. If there are no save points then these can be immediately freed, which is
            // done at the end of this function.
            let savepoint_exists = self.transaction_tracker.any_savepoint_exists();
            self.store_freed_pages(&mut 0, savepoint_exists)?;
        }

        let system_root = system_tree.finalize_dirty_checksums()?;

        // Finalize freed table checksums, before doing the final commit
        let freed_root = self.freed_tree.lock().unwrap().finalize_dirty_checksums()?;

        self.mem.commit(
            user_root,
            system_root,
            freed_root,
            self.transaction_id,
            eventual,
            self.two_phase_commit,
        )?;

        // Mark any pending non-durable commits as fully committed.
        self.transaction_tracker.clear_pending_non_durable_commits();

        // Immediately free the pages that were freed from the freed-tree itself. These are only
        // accessed by write transactions, so it's safe to free them as soon as the commit is done.
        for page in self.post_commit_frees.lock().unwrap().drain(..) {
            self.mem.free(page);
        }

        Ok(())
    }

    // Commit without a durability guarantee
    pub(crate) fn non_durable_commit(&mut self) -> Result {
        let user_root = self
            .tables
            .lock()
            .unwrap()
            .table_tree
            .flush_table_root_updates()?
            .finalize_dirty_checksums()?;

        let system_root = self
            .system_tables
            .lock()
            .unwrap()
            .table_tree
            .flush_table_root_updates()?
            .finalize_dirty_checksums()?;

        // Store all freed pages for a future commit(), since we can't free pages during a
        // non-durable commit (it's non-durable, so could be rolled back anytime in the future)
        self.store_freed_pages(&mut 0, true)?;

        // Finalize all checksums, before doing the final commit
        let freed_root = self.freed_tree.lock().unwrap().finalize_dirty_checksums()?;

        self.mem
            .non_durable_commit(user_root, system_root, freed_root, self.transaction_id)?;
        // Register this as a non-durable transaction to ensure that the freed pages we just pushed
        // are only processed after this has been persisted
        self.transaction_tracker
            .register_non_durable_commit(self.transaction_id);
        Ok(())
    }

    // Relocate pages to lower number regions/pages
    // Returns true if a page(s) was moved
    pub(crate) fn compact_pages(&mut self) -> Result<bool> {
        let mut progress = false;
        // Relocate the region tracker page
        if self.mem.relocate_region_tracker()? {
            progress = true;
        }

        // Find the 1M highest pages
        let mut highest_pages = BTreeMap::new();
        let mut tables = self.tables.lock().unwrap();
        let table_tree = &mut tables.table_tree;
        table_tree.highest_index_pages(MAX_PAGES_PER_COMPACTION, &mut highest_pages)?;
        let mut system_tables = self.system_tables.lock().unwrap();
        let system_table_tree = &mut system_tables.table_tree;
        system_table_tree.highest_index_pages(MAX_PAGES_PER_COMPACTION, &mut highest_pages)?;

        // Calculate how many of them can be relocated to lower pages, starting from the last page
        let mut relocation_map = HashMap::new();
        for path in highest_pages.into_values().rev() {
            if relocation_map.contains_key(&path.page_number()) {
                continue;
            }
            let old_page = self.mem.get_page(path.page_number())?;
            let mut new_page = self.mem.allocate_lowest(old_page.memory().len())?;
            let new_page_number = new_page.get_page_number();
            // We have to copy at least the page type into the new page.
            // Otherwise its cache priority will be calculated incorrectly
            new_page.memory_mut()[0] = old_page.memory()[0];
            drop(new_page);
            // We're able to move this to a lower page, so insert it and rewrite all its parents
            if new_page_number < path.page_number() {
                relocation_map.insert(path.page_number(), new_page_number);
                for parent in path.parents() {
                    if relocation_map.contains_key(parent) {
                        continue;
                    }
                    let old_parent = self.mem.get_page(*parent)?;
                    let mut new_page = self.mem.allocate_lowest(old_parent.memory().len())?;
                    let new_page_number = new_page.get_page_number();
                    // We have to copy at least the page type into the new page.
                    // Otherwise its cache priority will be calculated incorrectly
                    new_page.memory_mut()[0] = old_parent.memory()[0];
                    drop(new_page);
                    relocation_map.insert(*parent, new_page_number);
                }
            } else {
                self.mem.free(new_page_number);
                break;
            }
        }

        if !relocation_map.is_empty() {
            progress = true;
        }

        table_tree.relocate_tables(&relocation_map)?;
        system_table_tree.relocate_tables(&relocation_map)?;

        Ok(progress)
    }

    // NOTE: must be called before store_freed_pages() during commit, since this can create
    // more pages freed by the current transaction
    fn process_freed_pages(&mut self, free_until: TransactionId) -> Result {
        // We assume below that PageNumber is length 8
        assert_eq!(PageNumber::serialized_size(), 8);
        let lookup_key = FreedTableKey {
            transaction_id: free_until.raw_id(),
            pagination_id: 0,
        };

        let mut to_remove = vec![];
        let mut freed_tree = self.freed_tree.lock().unwrap();
        for entry in freed_tree.range(&(..lookup_key))? {
            let entry = entry?;
            to_remove.push(entry.key());
            let value = entry.value();
            for i in 0..value.len() {
                self.mem.free(value.get(i));
            }
        }

        // Remove all the old transactions
        for key in to_remove {
            freed_tree.remove(&key)?;
        }

        Ok(())
    }

    fn store_freed_pages(
        &self,
        pagination_counter: &mut u64,
        include_post_commit_free: bool,
    ) -> Result {
        assert_eq!(PageNumber::serialized_size(), 8); // We assume below that PageNumber is length 8

        let mut freed_tree = self.freed_tree.lock().unwrap();
        if include_post_commit_free {
            // Move all the post-commit pages that came from the freed-tree. These need to be stored
            // since we can't free pages until a durable commit
            self.freed_pages
                .lock()
                .unwrap()
                .extend(self.post_commit_frees.lock().unwrap().drain(..));
        }
        while !self.freed_pages.lock().unwrap().is_empty() {
            let chunk_size = 100;
            let buffer_size = FreedPageList::required_bytes(chunk_size);
            let key = FreedTableKey {
                transaction_id: self.transaction_id.raw_id(),
                pagination_id: *pagination_counter,
            };
            let mut access_guard =
                freed_tree.insert_reserve(&key, buffer_size.try_into().unwrap())?;

            let mut freed_pages = self.freed_pages.lock().unwrap();
            let len = freed_pages.len();
            access_guard.as_mut().clear();
            for page in freed_pages.drain(len - min(len, chunk_size)..) {
                access_guard.as_mut().push_back(page);
            }
            drop(access_guard);

            *pagination_counter += 1;

            if include_post_commit_free {
                // Move all the post-commit pages that came from the freed-tree. These need to be stored
                // since we can't free pages until a durable commit
                freed_pages.extend(self.post_commit_frees.lock().unwrap().drain(..));
            }
        }

        Ok(())
    }

    /// Retrieves information about storage usage in the database
    pub fn stats(&self) -> Result<DatabaseStats> {
        let tables = self.tables.lock().unwrap();
        let table_tree = &tables.table_tree;
        let data_tree_stats = table_tree.stats()?;

        let system_tables = self.system_tables.lock().unwrap();
        let system_table_tree = &system_tables.table_tree;
        let system_tree_stats = system_table_tree.stats()?;

        let freed_tree_stats = self.freed_tree.lock().unwrap().stats()?;

        let total_metadata_bytes = data_tree_stats.metadata_bytes()
            + system_tree_stats.metadata_bytes
            + system_tree_stats.stored_leaf_bytes
            + freed_tree_stats.metadata_bytes
            + freed_tree_stats.stored_leaf_bytes;
        let total_fragmented = data_tree_stats.fragmented_bytes()
            + system_tree_stats.fragmented_bytes
            + freed_tree_stats.fragmented_bytes;

        Ok(DatabaseStats {
            tree_height: data_tree_stats.tree_height(),
            allocated_pages: self.mem.count_allocated_pages()?,
            leaf_pages: data_tree_stats.leaf_pages(),
            branch_pages: data_tree_stats.branch_pages(),
            stored_leaf_bytes: data_tree_stats.stored_bytes(),
            metadata_bytes: total_metadata_bytes,
            fragmented_bytes: total_fragmented,
            page_size: self.mem.get_page_size(),
        })
    }

    #[cfg(any(test, fuzzing))]
    pub fn num_region_tracker_pages(&self) -> u64 {
        1 << self.mem.tracker_page().page_order
    }

    #[allow(dead_code)]
    pub(crate) fn print_debug(&self) -> Result {
        // Flush any pending updates to make sure we get the latest root
        let mut tables = self.tables.lock().unwrap();
        if let Some(page) = tables
            .table_tree
            .flush_table_root_updates()
            .unwrap()
            .finalize_dirty_checksums()
            .unwrap()
        {
            eprintln!("Master tree:");
            let master_tree: Btree<&str, InternalTableDefinition> = Btree::new(
                Some(page),
                PageHint::None,
                self.transaction_guard.clone(),
                self.mem.clone(),
            )?;
            master_tree.print_debug(true)?;
        }

        Ok(())
    }
}

impl Drop for WriteTransaction {
    fn drop(&mut self) {
        if !self.completed && !thread::panicking() && !self.mem.storage_failure() {
            #[allow(unused_variables)]
            if let Err(error) = self.abort_inner() {
                #[cfg(feature = "logging")]
                warn!("Failure automatically aborting transaction: {}", error);
            }
        }
    }
}

/// A read-only transaction
///
/// Read-only transactions may exist concurrently with writes
pub struct ReadTransaction {
    mem: Arc<TransactionalMemory>,
    tree: TableTree,
}

impl ReadTransaction {
    pub(crate) fn new(
        mem: Arc<TransactionalMemory>,
        guard: TransactionGuard,
    ) -> Result<Self, TransactionError> {
        let root_page = mem.get_data_root();
        let guard = Arc::new(guard);
        Ok(Self {
            mem: mem.clone(),
            tree: TableTree::new(root_page, PageHint::Clean, guard, mem)
                .map_err(TransactionError::Storage)?,
        })
    }

    /// Open the given table
    pub fn open_table<K: Key + 'static, V: Value + 'static>(
        &self,
        definition: TableDefinition<K, V>,
    ) -> Result<ReadOnlyTable<K, V>, TableError> {
        let header = self
            .tree
            .get_table::<K, V>(definition.name(), TableType::Normal)?
            .ok_or_else(|| TableError::TableDoesNotExist(definition.name().to_string()))?;

        match header {
            InternalTableDefinition::Normal { table_root, .. } => Ok(ReadOnlyTable::new(
                definition.name().to_string(),
                table_root,
                PageHint::Clean,
                self.tree.transaction_guard().clone(),
                self.mem.clone(),
            )?),
            InternalTableDefinition::Multimap { .. } => unreachable!(),
        }
    }

    /// Open the given table without a type
    pub fn open_untyped_table(
        &self,
        handle: impl TableHandle,
    ) -> Result<ReadOnlyUntypedTable, TableError> {
        let header = self
            .tree
            .get_table_untyped(handle.name(), TableType::Normal)?
            .ok_or_else(|| TableError::TableDoesNotExist(handle.name().to_string()))?;

        match header {
            InternalTableDefinition::Normal {
                table_root,
                fixed_key_size,
                fixed_value_size,
                ..
            } => Ok(ReadOnlyUntypedTable::new(
                table_root,
                fixed_key_size,
                fixed_value_size,
                self.mem.clone(),
            )),
            InternalTableDefinition::Multimap { .. } => unreachable!(),
        }
    }

    /// Open the given table
    pub fn open_multimap_table<K: Key + 'static, V: Key + 'static>(
        &self,
        definition: MultimapTableDefinition<K, V>,
    ) -> Result<ReadOnlyMultimapTable<K, V>, TableError> {
        let header = self
            .tree
            .get_table::<K, V>(definition.name(), TableType::Multimap)?
            .ok_or_else(|| TableError::TableDoesNotExist(definition.name().to_string()))?;

        match header {
            InternalTableDefinition::Normal { .. } => unreachable!(),
            InternalTableDefinition::Multimap {
                table_root,
                table_length,
                ..
            } => Ok(ReadOnlyMultimapTable::new(
                table_root,
                table_length,
                PageHint::Clean,
                self.tree.transaction_guard().clone(),
                self.mem.clone(),
            )?),
        }
    }

    /// Open the given table without a type
    pub fn open_untyped_multimap_table(
        &self,
        handle: impl MultimapTableHandle,
    ) -> Result<ReadOnlyUntypedMultimapTable, TableError> {
        let header = self
            .tree
            .get_table_untyped(handle.name(), TableType::Multimap)?
            .ok_or_else(|| TableError::TableDoesNotExist(handle.name().to_string()))?;

        match header {
            InternalTableDefinition::Normal { .. } => unreachable!(),
            InternalTableDefinition::Multimap {
                table_root,
                table_length,
                fixed_key_size,
                fixed_value_size,
                ..
            } => Ok(ReadOnlyUntypedMultimapTable::new(
                table_root,
                table_length,
                fixed_key_size,
                fixed_value_size,
                self.mem.clone(),
            )),
        }
    }

    /// List all the tables
    pub fn list_tables(&self) -> Result<impl Iterator<Item = UntypedTableHandle>> {
        self.tree
            .list_tables(TableType::Normal)
            .map(|x| x.into_iter().map(UntypedTableHandle::new))
    }

    /// List all the multimap tables
    pub fn list_multimap_tables(&self) -> Result<impl Iterator<Item = UntypedMultimapTableHandle>> {
        self.tree
            .list_tables(TableType::Multimap)
            .map(|x| x.into_iter().map(UntypedMultimapTableHandle::new))
    }

    /// Close the transaction
    ///
    /// Transactions are automatically closed when they and all objects referencing them have been dropped,
    /// so this method does not normally need to be called.
    /// This method can be used to ensure that there are no outstanding objects remaining.
    ///
    /// Returns `ReadTransactionStillInUse` error if a table or other object retrieved from the transaction still references this transaction
    pub fn close(self) -> Result<(), TransactionError> {
        if Arc::strong_count(self.tree.transaction_guard()) > 1 {
            return Err(TransactionError::ReadTransactionStillInUse(self));
        }
        // No-op, just drop ourself
        Ok(())
    }
}

impl Debug for ReadTransaction {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        f.write_str("ReadTransaction")
    }
}

#[cfg(test)]
mod test {
    use crate::{Database, TableDefinition};

    const X: TableDefinition<&str, &str> = TableDefinition::new("x");

    #[test]
    fn transaction_id_persistence() {
        let tmpfile = crate::create_tempfile();
        let db = Database::create(tmpfile.path()).unwrap();
        let write_txn = db.begin_write().unwrap();
        {
            let mut table = write_txn.open_table(X).unwrap();
            table.insert("hello", "world").unwrap();
        }
        let first_txn_id = write_txn.transaction_id;
        write_txn.commit().unwrap();
        drop(db);

        let db2 = Database::create(tmpfile.path()).unwrap();
        let write_txn = db2.begin_write().unwrap();
        assert!(write_txn.transaction_id > first_txn_id);
    }
}