cuprate_helper/crypto.rs
1//! Crypto related functions and runtime initialized constants
2
3//---------------------------------------------------------------------------------------------------- Use
4use std::sync::LazyLock;
5
6use curve25519_dalek::{
7 constants::{ED25519_BASEPOINT_COMPRESSED, ED25519_BASEPOINT_POINT},
8 edwards::CompressedEdwardsY,
9 edwards::VartimeEdwardsPrecomputation,
10 traits::VartimePrecomputedMultiscalarMul,
11 Scalar,
12};
13use monero_serai::generators::H;
14
15//---------------------------------------------------------------------------------------------------- Pre-computation
16
17/// This is the decomposed amount table containing the mandatory Pre-RCT amounts. It is used to pre-compute
18/// zero commitments at runtime.
19///
20/// Defined at:
21/// - <https://github.com/monero-project/monero/blob/893916ad091a92e765ce3241b94e706ad012b62a/src/ringct/rctOps.cpp#L44>
22#[rustfmt::skip]
23pub const ZERO_COMMITMENT_DECOMPOSED_AMOUNT: [u64; 172] = [
24 1, 2, 3, 4, 5, 6, 7, 8, 9,
25 10, 20, 30, 40, 50, 60, 70, 80, 90,
26 100, 200, 300, 400, 500, 600, 700, 800, 900,
27 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000,
28 10000, 20000, 30000, 40000, 50000, 60000, 70000, 80000, 90000,
29 100000, 200000, 300000, 400000, 500000, 600000, 700000, 800000, 900000,
30 1000000, 2000000, 3000000, 4000000, 5000000, 6000000, 7000000, 8000000, 9000000,
31 10000000, 20000000, 30000000, 40000000, 50000000, 60000000, 70000000, 80000000, 90000000,
32 100000000, 200000000, 300000000, 400000000, 500000000, 600000000, 700000000, 800000000, 900000000,
33 1000000000, 2000000000, 3000000000, 4000000000, 5000000000, 6000000000, 7000000000, 8000000000, 9000000000,
34 10000000000, 20000000000, 30000000000, 40000000000, 50000000000, 60000000000, 70000000000, 80000000000, 90000000000,
35 100000000000, 200000000000, 300000000000, 400000000000, 500000000000, 600000000000, 700000000000, 800000000000, 900000000000,
36 1000000000000, 2000000000000, 3000000000000, 4000000000000, 5000000000000, 6000000000000, 7000000000000, 8000000000000, 9000000000000,
37 10000000000000, 20000000000000, 30000000000000, 40000000000000, 50000000000000, 60000000000000, 70000000000000, 80000000000000, 90000000000000,
38 100000000000000, 200000000000000, 300000000000000, 400000000000000, 500000000000000, 600000000000000, 700000000000000, 800000000000000, 900000000000000,
39 1000000000000000, 2000000000000000, 3000000000000000, 4000000000000000, 5000000000000000, 6000000000000000, 7000000000000000, 8000000000000000, 9000000000000000,
40 10000000000000000, 20000000000000000, 30000000000000000, 40000000000000000, 50000000000000000, 60000000000000000, 70000000000000000, 80000000000000000, 90000000000000000,
41 100000000000000000, 200000000000000000, 300000000000000000, 400000000000000000, 500000000000000000, 600000000000000000, 700000000000000000, 800000000000000000, 900000000000000000,
42 1000000000000000000, 2000000000000000000, 3000000000000000000, 4000000000000000000, 5000000000000000000, 6000000000000000000, 7000000000000000000, 8000000000000000000, 9000000000000000000,
43 10000000000000000000
44];
45
46/// Runtime initialized [`H`] generator.
47static H_PRECOMP: LazyLock<VartimeEdwardsPrecomputation> =
48 LazyLock::new(|| VartimeEdwardsPrecomputation::new([*H, ED25519_BASEPOINT_POINT]));
49
50/// Runtime initialized zero commitment lookup table
51///
52/// # Invariant
53/// This function assumes that the [`ZERO_COMMITMENT_DECOMPOSED_AMOUNT`]
54/// table is sorted.
55pub static ZERO_COMMITMENT_LOOKUP_TABLE: LazyLock<[CompressedEdwardsY; 172]> =
56 LazyLock::new(|| {
57 let mut lookup_table: [CompressedEdwardsY; 172] = [ED25519_BASEPOINT_COMPRESSED; 172];
58
59 for (i, amount) in ZERO_COMMITMENT_DECOMPOSED_AMOUNT.into_iter().enumerate() {
60 lookup_table[i] = (ED25519_BASEPOINT_POINT + *H * Scalar::from(amount)).compress();
61 }
62
63 lookup_table
64 });
65
66//---------------------------------------------------------------------------------------------------- Free functions
67
68/// This function computes the zero commitment given a specific amount.
69///
70/// It will first attempt to lookup into the table of known Pre-RCT value.
71/// Compute it otherwise.
72#[expect(clippy::cast_possible_truncation)]
73pub fn compute_zero_commitment(amount: u64) -> CompressedEdwardsY {
74 // OPTIMIZATION: Unlike monerod which execute a linear search across its lookup
75 // table (O(n)). Cuprate is making use of an arithmetic based constant time
76 // version (O(1)). It has been benchmarked in both hit and miss scenarios against
77 // a binary search lookup (O(log2(n))). To understand the following algorithm it
78 // is important to observe the pattern that follows the values of
79 // [`ZERO_COMMITMENT_DECOMPOSED_AMOUNT`].
80
81 // First obtain the logarithm base 10 of the amount. and extend it back to obtain
82 // the amount without its most significant digit.
83 let Some(log) = amount.checked_ilog10() else {
84 // amount = 0 so H component is 0.
85 return ED25519_BASEPOINT_COMPRESSED;
86 };
87 let div = 10_u64.pow(log);
88
89 // Extract the most significant digit.
90 let most_significant_digit = amount / div;
91
92 // If the *rounded* version is different than the exact amount. Then
93 // there aren't only trailing zeroes behind the most significant digit.
94 // The amount is not part of the table and can calculated apart.
95 if most_significant_digit * div != amount {
96 return H_PRECOMP
97 .vartime_multiscalar_mul([Scalar::from(amount), Scalar::ONE])
98 .compress();
99 }
100
101 // Calculating the index back by progressing within the powers of 10.
102 // The index of the first value in the cached amount's row.
103 let row_start = u64::from(log) * 9;
104 // The index of the cached amount
105 let index = (most_significant_digit - 1 + row_start) as usize;
106
107 ZERO_COMMITMENT_LOOKUP_TABLE[index]
108}
109
110//---------------------------------------------------------------------------------------------------- Tests
111#[cfg(test)]
112mod test {
113 use curve25519_dalek::{traits::VartimePrecomputedMultiscalarMul, Scalar};
114
115 use crate::crypto::{compute_zero_commitment, H_PRECOMP, ZERO_COMMITMENT_DECOMPOSED_AMOUNT};
116
117 #[test]
118 /// Compare the output of `compute_zero_commitment` for all
119 /// preRCT decomposed amounts against their actual computation.
120 ///
121 /// Assert that the lookup table returns the correct commitments
122 fn compare_lookup_with_computation() {
123 for amount in ZERO_COMMITMENT_DECOMPOSED_AMOUNT {
124 let commitment = H_PRECOMP.vartime_multiscalar_mul([Scalar::from(amount), Scalar::ONE]);
125 assert_eq!(
126 commitment,
127 compute_zero_commitment(amount).decompress().unwrap()
128 );
129 }
130 }
131}