libm/math/
j0.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
/* origin: FreeBSD /usr/src/lib/msun/src/e_j0.c */
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunSoft, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */
/* j0(x), y0(x)
 * Bessel function of the first and second kinds of order zero.
 * Method -- j0(x):
 *      1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
 *      2. Reduce x to |x| since j0(x)=j0(-x),  and
 *         for x in (0,2)
 *              j0(x) = 1-z/4+ z^2*R0/S0,  where z = x*x;
 *         (precision:  |j0-1+z/4-z^2R0/S0 |<2**-63.67 )
 *         for x in (2,inf)
 *              j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
 *         where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
 *         as follow:
 *              cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
 *                      = 1/sqrt(2) * (cos(x) + sin(x))
 *              sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
 *                      = 1/sqrt(2) * (sin(x) - cos(x))
 *         (To avoid cancellation, use
 *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
 *          to compute the worse one.)
 *
 *      3 Special cases
 *              j0(nan)= nan
 *              j0(0) = 1
 *              j0(inf) = 0
 *
 * Method -- y0(x):
 *      1. For x<2.
 *         Since
 *              y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
 *         therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
 *         We use the following function to approximate y0,
 *              y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
 *         where
 *              U(z) = u00 + u01*z + ... + u06*z^6
 *              V(z) = 1  + v01*z + ... + v04*z^4
 *         with absolute approximation error bounded by 2**-72.
 *         Note: For tiny x, U/V = u0 and j0(x)~1, hence
 *              y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
 *      2. For x>=2.
 *              y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
 *         where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
 *         by the method mentioned above.
 *      3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
 */

use super::{cos, fabs, get_high_word, get_low_word, log, sin, sqrt};
const INVSQRTPI: f64 = 5.64189583547756279280e-01; /* 0x3FE20DD7, 0x50429B6D */
const TPI: f64 = 6.36619772367581382433e-01; /* 0x3FE45F30, 0x6DC9C883 */

/* common method when |x|>=2 */
fn common(ix: u32, x: f64, y0: bool) -> f64 {
    let s: f64;
    let mut c: f64;
    let mut ss: f64;
    let mut cc: f64;
    let z: f64;

    /*
     * j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x-pi/4)-q0(x)*sin(x-pi/4))
     * y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x-pi/4)+q0(x)*cos(x-pi/4))
     *
     * sin(x-pi/4) = (sin(x) - cos(x))/sqrt(2)
     * cos(x-pi/4) = (sin(x) + cos(x))/sqrt(2)
     * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
     */
    s = sin(x);
    c = cos(x);
    if y0 {
        c = -c;
    }
    cc = s + c;
    /* avoid overflow in 2*x, big ulp error when x>=0x1p1023 */
    if ix < 0x7fe00000 {
        ss = s - c;
        z = -cos(2.0 * x);
        if s * c < 0.0 {
            cc = z / ss;
        } else {
            ss = z / cc;
        }
        if ix < 0x48000000 {
            if y0 {
                ss = -ss;
            }
            cc = pzero(x) * cc - qzero(x) * ss;
        }
    }
    return INVSQRTPI * cc / sqrt(x);
}

/* R0/S0 on [0, 2.00] */
const R02: f64 = 1.56249999999999947958e-02; /* 0x3F8FFFFF, 0xFFFFFFFD */
const R03: f64 = -1.89979294238854721751e-04; /* 0xBF28E6A5, 0xB61AC6E9 */
const R04: f64 = 1.82954049532700665670e-06; /* 0x3EBEB1D1, 0x0C503919 */
const R05: f64 = -4.61832688532103189199e-09; /* 0xBE33D5E7, 0x73D63FCE */
const S01: f64 = 1.56191029464890010492e-02; /* 0x3F8FFCE8, 0x82C8C2A4 */
const S02: f64 = 1.16926784663337450260e-04; /* 0x3F1EA6D2, 0xDD57DBF4 */
const S03: f64 = 5.13546550207318111446e-07; /* 0x3EA13B54, 0xCE84D5A9 */
const S04: f64 = 1.16614003333790000205e-09; /* 0x3E1408BC, 0xF4745D8F */

/// Zeroth order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the first kind (f64).
pub fn j0(mut x: f64) -> f64 {
    let z: f64;
    let r: f64;
    let s: f64;
    let mut ix: u32;

    ix = get_high_word(x);
    ix &= 0x7fffffff;

    /* j0(+-inf)=0, j0(nan)=nan */
    if ix >= 0x7ff00000 {
        return 1.0 / (x * x);
    }
    x = fabs(x);

    if ix >= 0x40000000 {
        /* |x| >= 2 */
        /* large ulp error near zeros: 2.4, 5.52, 8.6537,.. */
        return common(ix, x, false);
    }

    /* 1 - x*x/4 + x*x*R(x^2)/S(x^2) */
    if ix >= 0x3f200000 {
        /* |x| >= 2**-13 */
        /* up to 4ulp error close to 2 */
        z = x * x;
        r = z * (R02 + z * (R03 + z * (R04 + z * R05)));
        s = 1.0 + z * (S01 + z * (S02 + z * (S03 + z * S04)));
        return (1.0 + x / 2.0) * (1.0 - x / 2.0) + z * (r / s);
    }

    /* 1 - x*x/4 */
    /* prevent underflow */
    /* inexact should be raised when x!=0, this is not done correctly */
    if ix >= 0x38000000 {
        /* |x| >= 2**-127 */
        x = 0.25 * x * x;
    }
    return 1.0 - x;
}

const U00: f64 = -7.38042951086872317523e-02; /* 0xBFB2E4D6, 0x99CBD01F */
const U01: f64 = 1.76666452509181115538e-01; /* 0x3FC69D01, 0x9DE9E3FC */
const U02: f64 = -1.38185671945596898896e-02; /* 0xBF8C4CE8, 0xB16CFA97 */
const U03: f64 = 3.47453432093683650238e-04; /* 0x3F36C54D, 0x20B29B6B */
const U04: f64 = -3.81407053724364161125e-06; /* 0xBECFFEA7, 0x73D25CAD */
const U05: f64 = 1.95590137035022920206e-08; /* 0x3E550057, 0x3B4EABD4 */
const U06: f64 = -3.98205194132103398453e-11; /* 0xBDC5E43D, 0x693FB3C8 */
const V01: f64 = 1.27304834834123699328e-02; /* 0x3F8A1270, 0x91C9C71A */
const V02: f64 = 7.60068627350353253702e-05; /* 0x3F13ECBB, 0xF578C6C1 */
const V03: f64 = 2.59150851840457805467e-07; /* 0x3E91642D, 0x7FF202FD */
const V04: f64 = 4.41110311332675467403e-10; /* 0x3DFE5018, 0x3BD6D9EF */

/// Zeroth order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the second kind (f64).
pub fn y0(x: f64) -> f64 {
    let z: f64;
    let u: f64;
    let v: f64;
    let ix: u32;
    let lx: u32;

    ix = get_high_word(x);
    lx = get_low_word(x);

    /* y0(nan)=nan, y0(<0)=nan, y0(0)=-inf, y0(inf)=0 */
    if ((ix << 1) | lx) == 0 {
        return -1.0 / 0.0;
    }
    if (ix >> 31) != 0 {
        return 0.0 / 0.0;
    }
    if ix >= 0x7ff00000 {
        return 1.0 / x;
    }

    if ix >= 0x40000000 {
        /* x >= 2 */
        /* large ulp errors near zeros: 3.958, 7.086,.. */
        return common(ix, x, true);
    }

    /* U(x^2)/V(x^2) + (2/pi)*j0(x)*log(x) */
    if ix >= 0x3e400000 {
        /* x >= 2**-27 */
        /* large ulp error near the first zero, x ~= 0.89 */
        z = x * x;
        u = U00 + z * (U01 + z * (U02 + z * (U03 + z * (U04 + z * (U05 + z * U06)))));
        v = 1.0 + z * (V01 + z * (V02 + z * (V03 + z * V04)));
        return u / v + TPI * (j0(x) * log(x));
    }
    return U00 + TPI * log(x);
}

/* The asymptotic expansions of pzero is
 *      1 - 9/128 s^2 + 11025/98304 s^4 - ...,  where s = 1/x.
 * For x >= 2, We approximate pzero by
 *      pzero(x) = 1 + (R/S)
 * where  R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
 *        S = 1 + pS0*s^2 + ... + pS4*s^10
 * and
 *      | pzero(x)-1-R/S | <= 2  ** ( -60.26)
 */
const PR8: [f64; 6] = [
    /* for x in [inf, 8]=1/[0,0.125] */
    0.00000000000000000000e+00,  /* 0x00000000, 0x00000000 */
    -7.03124999999900357484e-02, /* 0xBFB1FFFF, 0xFFFFFD32 */
    -8.08167041275349795626e+00, /* 0xC02029D0, 0xB44FA779 */
    -2.57063105679704847262e+02, /* 0xC0701102, 0x7B19E863 */
    -2.48521641009428822144e+03, /* 0xC0A36A6E, 0xCD4DCAFC */
    -5.25304380490729545272e+03, /* 0xC0B4850B, 0x36CC643D */
];
const PS8: [f64; 5] = [
    1.16534364619668181717e+02, /* 0x405D2233, 0x07A96751 */
    3.83374475364121826715e+03, /* 0x40ADF37D, 0x50596938 */
    4.05978572648472545552e+04, /* 0x40E3D2BB, 0x6EB6B05F */
    1.16752972564375915681e+05, /* 0x40FC810F, 0x8F9FA9BD */
    4.76277284146730962675e+04, /* 0x40E74177, 0x4F2C49DC */
];

const PR5: [f64; 6] = [
    /* for x in [8,4.5454]=1/[0.125,0.22001] */
    -1.14125464691894502584e-11, /* 0xBDA918B1, 0x47E495CC */
    -7.03124940873599280078e-02, /* 0xBFB1FFFF, 0xE69AFBC6 */
    -4.15961064470587782438e+00, /* 0xC010A370, 0xF90C6BBF */
    -6.76747652265167261021e+01, /* 0xC050EB2F, 0x5A7D1783 */
    -3.31231299649172967747e+02, /* 0xC074B3B3, 0x6742CC63 */
    -3.46433388365604912451e+02, /* 0xC075A6EF, 0x28A38BD7 */
];
const PS5: [f64; 5] = [
    6.07539382692300335975e+01, /* 0x404E6081, 0x0C98C5DE */
    1.05125230595704579173e+03, /* 0x40906D02, 0x5C7E2864 */
    5.97897094333855784498e+03, /* 0x40B75AF8, 0x8FBE1D60 */
    9.62544514357774460223e+03, /* 0x40C2CCB8, 0xFA76FA38 */
    2.40605815922939109441e+03, /* 0x40A2CC1D, 0xC70BE864 */
];

const PR3: [f64; 6] = [
    /* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
    -2.54704601771951915620e-09, /* 0xBE25E103, 0x6FE1AA86 */
    -7.03119616381481654654e-02, /* 0xBFB1FFF6, 0xF7C0E24B */
    -2.40903221549529611423e+00, /* 0xC00345B2, 0xAEA48074 */
    -2.19659774734883086467e+01, /* 0xC035F74A, 0x4CB94E14 */
    -5.80791704701737572236e+01, /* 0xC04D0A22, 0x420A1A45 */
    -3.14479470594888503854e+01, /* 0xC03F72AC, 0xA892D80F */
];
const PS3: [f64; 5] = [
    3.58560338055209726349e+01, /* 0x4041ED92, 0x84077DD3 */
    3.61513983050303863820e+02, /* 0x40769839, 0x464A7C0E */
    1.19360783792111533330e+03, /* 0x4092A66E, 0x6D1061D6 */
    1.12799679856907414432e+03, /* 0x40919FFC, 0xB8C39B7E */
    1.73580930813335754692e+02, /* 0x4065B296, 0xFC379081 */
];

const PR2: [f64; 6] = [
    /* for x in [2.8570,2]=1/[0.3499,0.5] */
    -8.87534333032526411254e-08, /* 0xBE77D316, 0xE927026D */
    -7.03030995483624743247e-02, /* 0xBFB1FF62, 0x495E1E42 */
    -1.45073846780952986357e+00, /* 0xBFF73639, 0x8A24A843 */
    -7.63569613823527770791e+00, /* 0xC01E8AF3, 0xEDAFA7F3 */
    -1.11931668860356747786e+01, /* 0xC02662E6, 0xC5246303 */
    -3.23364579351335335033e+00, /* 0xC009DE81, 0xAF8FE70F */
];
const PS2: [f64; 5] = [
    2.22202997532088808441e+01, /* 0x40363865, 0x908B5959 */
    1.36206794218215208048e+02, /* 0x4061069E, 0x0EE8878F */
    2.70470278658083486789e+02, /* 0x4070E786, 0x42EA079B */
    1.53875394208320329881e+02, /* 0x40633C03, 0x3AB6FAFF */
    1.46576176948256193810e+01, /* 0x402D50B3, 0x44391809 */
];

fn pzero(x: f64) -> f64 {
    let p: &[f64; 6];
    let q: &[f64; 5];
    let z: f64;
    let r: f64;
    let s: f64;
    let mut ix: u32;

    ix = get_high_word(x);
    ix &= 0x7fffffff;
    if ix >= 0x40200000 {
        p = &PR8;
        q = &PS8;
    } else if ix >= 0x40122E8B {
        p = &PR5;
        q = &PS5;
    } else if ix >= 0x4006DB6D {
        p = &PR3;
        q = &PS3;
    } else
    /*ix >= 0x40000000*/
    {
        p = &PR2;
        q = &PS2;
    }
    z = 1.0 / (x * x);
    r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
    s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * q[4]))));
    return 1.0 + r / s;
}

/* For x >= 8, the asymptotic expansions of qzero is
 *      -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
 * We approximate pzero by
 *      qzero(x) = s*(-1.25 + (R/S))
 * where  R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
 *        S = 1 + qS0*s^2 + ... + qS5*s^12
 * and
 *      | qzero(x)/s +1.25-R/S | <= 2  ** ( -61.22)
 */
const QR8: [f64; 6] = [
    /* for x in [inf, 8]=1/[0,0.125] */
    0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
    7.32421874999935051953e-02, /* 0x3FB2BFFF, 0xFFFFFE2C */
    1.17682064682252693899e+01, /* 0x40278952, 0x5BB334D6 */
    5.57673380256401856059e+02, /* 0x40816D63, 0x15301825 */
    8.85919720756468632317e+03, /* 0x40C14D99, 0x3E18F46D */
    3.70146267776887834771e+04, /* 0x40E212D4, 0x0E901566 */
];
const QS8: [f64; 6] = [
    1.63776026895689824414e+02,  /* 0x406478D5, 0x365B39BC */
    8.09834494656449805916e+03,  /* 0x40BFA258, 0x4E6B0563 */
    1.42538291419120476348e+05,  /* 0x41016652, 0x54D38C3F */
    8.03309257119514397345e+05,  /* 0x412883DA, 0x83A52B43 */
    8.40501579819060512818e+05,  /* 0x4129A66B, 0x28DE0B3D */
    -3.43899293537866615225e+05, /* 0xC114FD6D, 0x2C9530C5 */
];

const QR5: [f64; 6] = [
    /* for x in [8,4.5454]=1/[0.125,0.22001] */
    1.84085963594515531381e-11, /* 0x3DB43D8F, 0x29CC8CD9 */
    7.32421766612684765896e-02, /* 0x3FB2BFFF, 0xD172B04C */
    5.83563508962056953777e+00, /* 0x401757B0, 0xB9953DD3 */
    1.35111577286449829671e+02, /* 0x4060E392, 0x0A8788E9 */
    1.02724376596164097464e+03, /* 0x40900CF9, 0x9DC8C481 */
    1.98997785864605384631e+03, /* 0x409F17E9, 0x53C6E3A6 */
];
const QS5: [f64; 6] = [
    8.27766102236537761883e+01,  /* 0x4054B1B3, 0xFB5E1543 */
    2.07781416421392987104e+03,  /* 0x40A03BA0, 0xDA21C0CE */
    1.88472887785718085070e+04,  /* 0x40D267D2, 0x7B591E6D */
    5.67511122894947329769e+04,  /* 0x40EBB5E3, 0x97E02372 */
    3.59767538425114471465e+04,  /* 0x40E19118, 0x1F7A54A0 */
    -5.35434275601944773371e+03, /* 0xC0B4EA57, 0xBEDBC609 */
];

const QR3: [f64; 6] = [
    /* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
    4.37741014089738620906e-09, /* 0x3E32CD03, 0x6ADECB82 */
    7.32411180042911447163e-02, /* 0x3FB2BFEE, 0x0E8D0842 */
    3.34423137516170720929e+00, /* 0x400AC0FC, 0x61149CF5 */
    4.26218440745412650017e+01, /* 0x40454F98, 0x962DAEDD */
    1.70808091340565596283e+02, /* 0x406559DB, 0xE25EFD1F */
    1.66733948696651168575e+02, /* 0x4064D77C, 0x81FA21E0 */
];
const QS3: [f64; 6] = [
    4.87588729724587182091e+01,  /* 0x40486122, 0xBFE343A6 */
    7.09689221056606015736e+02,  /* 0x40862D83, 0x86544EB3 */
    3.70414822620111362994e+03,  /* 0x40ACF04B, 0xE44DFC63 */
    6.46042516752568917582e+03,  /* 0x40B93C6C, 0xD7C76A28 */
    2.51633368920368957333e+03,  /* 0x40A3A8AA, 0xD94FB1C0 */
    -1.49247451836156386662e+02, /* 0xC062A7EB, 0x201CF40F */
];

const QR2: [f64; 6] = [
    /* for x in [2.8570,2]=1/[0.3499,0.5] */
    1.50444444886983272379e-07, /* 0x3E84313B, 0x54F76BDB */
    7.32234265963079278272e-02, /* 0x3FB2BEC5, 0x3E883E34 */
    1.99819174093815998816e+00, /* 0x3FFFF897, 0xE727779C */
    1.44956029347885735348e+01, /* 0x402CFDBF, 0xAAF96FE5 */
    3.16662317504781540833e+01, /* 0x403FAA8E, 0x29FBDC4A */
    1.62527075710929267416e+01, /* 0x403040B1, 0x71814BB4 */
];
const QS2: [f64; 6] = [
    3.03655848355219184498e+01,  /* 0x403E5D96, 0xF7C07AED */
    2.69348118608049844624e+02,  /* 0x4070D591, 0xE4D14B40 */
    8.44783757595320139444e+02,  /* 0x408A6645, 0x22B3BF22 */
    8.82935845112488550512e+02,  /* 0x408B977C, 0x9C5CC214 */
    2.12666388511798828631e+02,  /* 0x406A9553, 0x0E001365 */
    -5.31095493882666946917e+00, /* 0xC0153E6A, 0xF8B32931 */
];

fn qzero(x: f64) -> f64 {
    let p: &[f64; 6];
    let q: &[f64; 6];
    let s: f64;
    let r: f64;
    let z: f64;
    let mut ix: u32;

    ix = get_high_word(x);
    ix &= 0x7fffffff;
    if ix >= 0x40200000 {
        p = &QR8;
        q = &QS8;
    } else if ix >= 0x40122E8B {
        p = &QR5;
        q = &QS5;
    } else if ix >= 0x4006DB6D {
        p = &QR3;
        q = &QS3;
    } else
    /*ix >= 0x40000000*/
    {
        p = &QR2;
        q = &QS2;
    }
    z = 1.0 / (x * x);
    r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
    s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * q[5])))));
    return (-0.125 + r / s) / x;
}