1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
//! Database writer thread definitions and logic.
//---------------------------------------------------------------------------------------------------- Import
use std::sync::Arc;

use cuprate_database::{ConcreteEnv, DatabaseRo, Env, EnvInner, RuntimeError, TxRw};
use cuprate_database_service::DatabaseWriteHandle;
use cuprate_types::{
    blockchain::{BlockchainResponse, BlockchainWriteRequest},
    AltBlockInformation, Chain, ChainId, VerifiedBlockInformation,
};

use crate::{
    service::{
        free::map_valid_alt_block_to_verified_block,
        types::{BlockchainWriteHandle, ResponseResult},
    },
    tables::{OpenTables, Tables},
    types::AltBlockHeight,
};

/// Write functions within this module abort if the write transaction
/// could not be aborted successfully to maintain atomicity.
///
/// This is the panic message if the `abort()` fails.
const TX_RW_ABORT_FAIL: &str =
    "Could not maintain blockchain database atomicity by aborting write transaction";

//---------------------------------------------------------------------------------------------------- init_write_service
/// Initialize the blockchain write service from a [`ConcreteEnv`].
pub fn init_write_service(env: Arc<ConcreteEnv>) -> BlockchainWriteHandle {
    DatabaseWriteHandle::init(env, handle_blockchain_request)
}

//---------------------------------------------------------------------------------------------------- handle_bc_request
/// Handle an incoming [`BlockchainWriteRequest`], returning a [`BlockchainResponse`].
fn handle_blockchain_request(
    env: &ConcreteEnv,
    req: &BlockchainWriteRequest,
) -> Result<BlockchainResponse, RuntimeError> {
    match req {
        BlockchainWriteRequest::WriteBlock(block) => write_block(env, block),
        BlockchainWriteRequest::WriteAltBlock(alt_block) => write_alt_block(env, alt_block),
        BlockchainWriteRequest::PopBlocks(numb_blocks) => pop_blocks(env, *numb_blocks),
        BlockchainWriteRequest::ReverseReorg(old_main_chain_id) => {
            reverse_reorg(env, *old_main_chain_id)
        }
        BlockchainWriteRequest::FlushAltBlocks => flush_alt_blocks(env),
    }
}

//---------------------------------------------------------------------------------------------------- Handler functions
// These are the actual functions that do stuff according to the incoming [`Request`].
//
// Each function name is a 1-1 mapping (from CamelCase -> snake_case) to
// the enum variant name, e.g: `BlockExtendedHeader` -> `block_extended_header`.
//
// Each function will return the [`Response`] that we
// should send back to the caller in [`map_request()`].

/// [`BlockchainWriteRequest::WriteBlock`].
#[inline]
fn write_block(env: &ConcreteEnv, block: &VerifiedBlockInformation) -> ResponseResult {
    let env_inner = env.env_inner();
    let tx_rw = env_inner.tx_rw()?;

    let result = {
        let mut tables_mut = env_inner.open_tables_mut(&tx_rw)?;
        crate::ops::block::add_block(block, &mut tables_mut)
    };

    match result {
        Ok(()) => {
            TxRw::commit(tx_rw)?;
            Ok(BlockchainResponse::Ok)
        }
        Err(e) => {
            TxRw::abort(tx_rw).expect(TX_RW_ABORT_FAIL);
            Err(e)
        }
    }
}

/// [`BlockchainWriteRequest::WriteAltBlock`].
#[inline]
fn write_alt_block(env: &ConcreteEnv, block: &AltBlockInformation) -> ResponseResult {
    let env_inner = env.env_inner();
    let tx_rw = env_inner.tx_rw()?;

    let result = {
        let mut tables_mut = env_inner.open_tables_mut(&tx_rw)?;
        crate::ops::alt_block::add_alt_block(block, &mut tables_mut)
    };

    match result {
        Ok(()) => {
            TxRw::commit(tx_rw)?;
            Ok(BlockchainResponse::Ok)
        }
        Err(e) => {
            TxRw::abort(tx_rw).expect(TX_RW_ABORT_FAIL);
            Err(e)
        }
    }
}

/// [`BlockchainWriteRequest::PopBlocks`].
fn pop_blocks(env: &ConcreteEnv, numb_blocks: usize) -> ResponseResult {
    let env_inner = env.env_inner();
    let mut tx_rw = env_inner.tx_rw()?;

    // FIXME: turn this function into a try block once stable.
    let mut result = || {
        // flush all the current alt blocks as they may reference blocks to be popped.
        crate::ops::alt_block::flush_alt_blocks(&env_inner, &mut tx_rw)?;

        let mut tables_mut = env_inner.open_tables_mut(&tx_rw)?;
        // generate a `ChainId` for the popped blocks.
        let old_main_chain_id = ChainId(rand::random());

        // pop the blocks
        for _ in 0..numb_blocks {
            crate::ops::block::pop_block(Some(old_main_chain_id), &mut tables_mut)?;
        }

        Ok(old_main_chain_id)
    };

    match result() {
        Ok(old_main_chain_id) => {
            TxRw::commit(tx_rw)?;
            Ok(BlockchainResponse::PopBlocks(old_main_chain_id))
        }
        Err(e) => {
            TxRw::abort(tx_rw).expect(TX_RW_ABORT_FAIL);
            Err(e)
        }
    }
}

/// [`BlockchainWriteRequest::ReverseReorg`].
fn reverse_reorg(env: &ConcreteEnv, chain_id: ChainId) -> ResponseResult {
    let env_inner = env.env_inner();
    let mut tx_rw = env_inner.tx_rw()?;

    // FIXME: turn this function into a try block once stable.
    let mut result = || {
        let mut tables_mut = env_inner.open_tables_mut(&tx_rw)?;

        let chain_info = tables_mut.alt_chain_infos().get(&chain_id.into())?;
        // Although this doesn't guarantee the chain was popped from the main-chain, it's an easy
        // thing for us to check.
        assert_eq!(Chain::from(chain_info.parent_chain), Chain::Main);

        let top_block_height =
            crate::ops::blockchain::top_block_height(tables_mut.block_heights())?;

        // pop any blocks that were added as part of a re-org.
        for _ in chain_info.common_ancestor_height..top_block_height {
            crate::ops::block::pop_block(None, &mut tables_mut)?;
        }

        // Add the old main chain blocks back to the main chain.
        for height in (chain_info.common_ancestor_height + 1)..chain_info.chain_height {
            let alt_block = crate::ops::alt_block::get_alt_block(
                &AltBlockHeight {
                    chain_id: chain_id.into(),
                    height,
                },
                &tables_mut,
            )?;
            let verified_block = map_valid_alt_block_to_verified_block(alt_block);
            crate::ops::block::add_block(&verified_block, &mut tables_mut)?;
        }

        drop(tables_mut);
        crate::ops::alt_block::flush_alt_blocks(&env_inner, &mut tx_rw)?;

        Ok(())
    };

    match result() {
        Ok(()) => {
            TxRw::commit(tx_rw)?;
            Ok(BlockchainResponse::Ok)
        }
        Err(e) => {
            TxRw::abort(tx_rw).expect(TX_RW_ABORT_FAIL);
            Err(e)
        }
    }
}

/// [`BlockchainWriteRequest::FlushAltBlocks`].
#[inline]
fn flush_alt_blocks(env: &ConcreteEnv) -> ResponseResult {
    let env_inner = env.env_inner();
    let mut tx_rw = env_inner.tx_rw()?;

    let result = crate::ops::alt_block::flush_alt_blocks(&env_inner, &mut tx_rw);

    match result {
        Ok(()) => {
            TxRw::commit(tx_rw)?;
            Ok(BlockchainResponse::Ok)
        }
        Err(e) => {
            TxRw::abort(tx_rw).expect(TX_RW_ABORT_FAIL);
            Err(e)
        }
    }
}