indexmap/
set.rs

1//! A hash set implemented using [`IndexMap`]
2
3mod iter;
4mod mutable;
5mod slice;
6
7#[cfg(test)]
8mod tests;
9
10pub use self::iter::{
11    Difference, Drain, Intersection, IntoIter, Iter, Splice, SymmetricDifference, Union,
12};
13pub use self::mutable::MutableValues;
14pub use self::slice::Slice;
15
16#[cfg(feature = "rayon")]
17pub use crate::rayon::set as rayon;
18use crate::TryReserveError;
19
20#[cfg(feature = "std")]
21use std::collections::hash_map::RandomState;
22
23use crate::util::try_simplify_range;
24use alloc::boxed::Box;
25use alloc::vec::Vec;
26use core::cmp::Ordering;
27use core::fmt;
28use core::hash::{BuildHasher, Hash};
29use core::ops::{BitAnd, BitOr, BitXor, Index, RangeBounds, Sub};
30
31use super::{Entries, Equivalent, IndexMap};
32
33type Bucket<T> = super::Bucket<T, ()>;
34
35/// A hash set where the iteration order of the values is independent of their
36/// hash values.
37///
38/// The interface is closely compatible with the standard
39/// [`HashSet`][std::collections::HashSet],
40/// but also has additional features.
41///
42/// # Order
43///
44/// The values have a consistent order that is determined by the sequence of
45/// insertion and removal calls on the set. The order does not depend on the
46/// values or the hash function at all. Note that insertion order and value
47/// are not affected if a re-insertion is attempted once an element is
48/// already present.
49///
50/// All iterators traverse the set *in order*.  Set operation iterators like
51/// [`IndexSet::union`] produce a concatenated order, as do their matching "bitwise"
52/// operators.  See their documentation for specifics.
53///
54/// The insertion order is preserved, with **notable exceptions** like the
55/// [`.remove()`][Self::remove] or [`.swap_remove()`][Self::swap_remove] methods.
56/// Methods such as [`.sort_by()`][Self::sort_by] of
57/// course result in a new order, depending on the sorting order.
58///
59/// # Indices
60///
61/// The values are indexed in a compact range without holes in the range
62/// `0..self.len()`. For example, the method `.get_full` looks up the index for
63/// a value, and the method `.get_index` looks up the value by index.
64///
65/// # Complexity
66///
67/// Internally, `IndexSet<T, S>` just holds an [`IndexMap<T, (), S>`](IndexMap). Thus the complexity
68/// of the two are the same for most methods.
69///
70/// # Examples
71///
72/// ```
73/// use indexmap::IndexSet;
74///
75/// // Collects which letters appear in a sentence.
76/// let letters: IndexSet<_> = "a short treatise on fungi".chars().collect();
77///
78/// assert!(letters.contains(&'s'));
79/// assert!(letters.contains(&'t'));
80/// assert!(letters.contains(&'u'));
81/// assert!(!letters.contains(&'y'));
82/// ```
83#[cfg(feature = "std")]
84pub struct IndexSet<T, S = RandomState> {
85    pub(crate) map: IndexMap<T, (), S>,
86}
87#[cfg(not(feature = "std"))]
88pub struct IndexSet<T, S> {
89    pub(crate) map: IndexMap<T, (), S>,
90}
91
92impl<T, S> Clone for IndexSet<T, S>
93where
94    T: Clone,
95    S: Clone,
96{
97    fn clone(&self) -> Self {
98        IndexSet {
99            map: self.map.clone(),
100        }
101    }
102
103    fn clone_from(&mut self, other: &Self) {
104        self.map.clone_from(&other.map);
105    }
106}
107
108impl<T, S> Entries for IndexSet<T, S> {
109    type Entry = Bucket<T>;
110
111    #[inline]
112    fn into_entries(self) -> Vec<Self::Entry> {
113        self.map.into_entries()
114    }
115
116    #[inline]
117    fn as_entries(&self) -> &[Self::Entry] {
118        self.map.as_entries()
119    }
120
121    #[inline]
122    fn as_entries_mut(&mut self) -> &mut [Self::Entry] {
123        self.map.as_entries_mut()
124    }
125
126    fn with_entries<F>(&mut self, f: F)
127    where
128        F: FnOnce(&mut [Self::Entry]),
129    {
130        self.map.with_entries(f);
131    }
132}
133
134impl<T, S> fmt::Debug for IndexSet<T, S>
135where
136    T: fmt::Debug,
137{
138    #[cfg(not(feature = "test_debug"))]
139    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
140        f.debug_set().entries(self.iter()).finish()
141    }
142
143    #[cfg(feature = "test_debug")]
144    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
145        // Let the inner `IndexMap` print all of its details
146        f.debug_struct("IndexSet").field("map", &self.map).finish()
147    }
148}
149
150#[cfg(feature = "std")]
151#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
152impl<T> IndexSet<T> {
153    /// Create a new set. (Does not allocate.)
154    pub fn new() -> Self {
155        IndexSet {
156            map: IndexMap::new(),
157        }
158    }
159
160    /// Create a new set with capacity for `n` elements.
161    /// (Does not allocate if `n` is zero.)
162    ///
163    /// Computes in **O(n)** time.
164    pub fn with_capacity(n: usize) -> Self {
165        IndexSet {
166            map: IndexMap::with_capacity(n),
167        }
168    }
169}
170
171impl<T, S> IndexSet<T, S> {
172    /// Create a new set with capacity for `n` elements.
173    /// (Does not allocate if `n` is zero.)
174    ///
175    /// Computes in **O(n)** time.
176    pub fn with_capacity_and_hasher(n: usize, hash_builder: S) -> Self {
177        IndexSet {
178            map: IndexMap::with_capacity_and_hasher(n, hash_builder),
179        }
180    }
181
182    /// Create a new set with `hash_builder`.
183    ///
184    /// This function is `const`, so it
185    /// can be called in `static` contexts.
186    pub const fn with_hasher(hash_builder: S) -> Self {
187        IndexSet {
188            map: IndexMap::with_hasher(hash_builder),
189        }
190    }
191
192    /// Return the number of elements the set can hold without reallocating.
193    ///
194    /// This number is a lower bound; the set might be able to hold more,
195    /// but is guaranteed to be able to hold at least this many.
196    ///
197    /// Computes in **O(1)** time.
198    pub fn capacity(&self) -> usize {
199        self.map.capacity()
200    }
201
202    /// Return a reference to the set's `BuildHasher`.
203    pub fn hasher(&self) -> &S {
204        self.map.hasher()
205    }
206
207    /// Return the number of elements in the set.
208    ///
209    /// Computes in **O(1)** time.
210    pub fn len(&self) -> usize {
211        self.map.len()
212    }
213
214    /// Returns true if the set contains no elements.
215    ///
216    /// Computes in **O(1)** time.
217    pub fn is_empty(&self) -> bool {
218        self.map.is_empty()
219    }
220
221    /// Return an iterator over the values of the set, in their order
222    pub fn iter(&self) -> Iter<'_, T> {
223        Iter::new(self.as_entries())
224    }
225
226    /// Remove all elements in the set, while preserving its capacity.
227    ///
228    /// Computes in **O(n)** time.
229    pub fn clear(&mut self) {
230        self.map.clear();
231    }
232
233    /// Shortens the set, keeping the first `len` elements and dropping the rest.
234    ///
235    /// If `len` is greater than the set's current length, this has no effect.
236    pub fn truncate(&mut self, len: usize) {
237        self.map.truncate(len);
238    }
239
240    /// Clears the `IndexSet` in the given index range, returning those values
241    /// as a drain iterator.
242    ///
243    /// The range may be any type that implements [`RangeBounds<usize>`],
244    /// including all of the `std::ops::Range*` types, or even a tuple pair of
245    /// `Bound` start and end values. To drain the set entirely, use `RangeFull`
246    /// like `set.drain(..)`.
247    ///
248    /// This shifts down all entries following the drained range to fill the
249    /// gap, and keeps the allocated memory for reuse.
250    ///
251    /// ***Panics*** if the starting point is greater than the end point or if
252    /// the end point is greater than the length of the set.
253    pub fn drain<R>(&mut self, range: R) -> Drain<'_, T>
254    where
255        R: RangeBounds<usize>,
256    {
257        Drain::new(self.map.core.drain(range))
258    }
259
260    /// Splits the collection into two at the given index.
261    ///
262    /// Returns a newly allocated set containing the elements in the range
263    /// `[at, len)`. After the call, the original set will be left containing
264    /// the elements `[0, at)` with its previous capacity unchanged.
265    ///
266    /// ***Panics*** if `at > len`.
267    pub fn split_off(&mut self, at: usize) -> Self
268    where
269        S: Clone,
270    {
271        Self {
272            map: self.map.split_off(at),
273        }
274    }
275
276    /// Reserve capacity for `additional` more values.
277    ///
278    /// Computes in **O(n)** time.
279    pub fn reserve(&mut self, additional: usize) {
280        self.map.reserve(additional);
281    }
282
283    /// Reserve capacity for `additional` more values, without over-allocating.
284    ///
285    /// Unlike `reserve`, this does not deliberately over-allocate the entry capacity to avoid
286    /// frequent re-allocations. However, the underlying data structures may still have internal
287    /// capacity requirements, and the allocator itself may give more space than requested, so this
288    /// cannot be relied upon to be precisely minimal.
289    ///
290    /// Computes in **O(n)** time.
291    pub fn reserve_exact(&mut self, additional: usize) {
292        self.map.reserve_exact(additional);
293    }
294
295    /// Try to reserve capacity for `additional` more values.
296    ///
297    /// Computes in **O(n)** time.
298    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
299        self.map.try_reserve(additional)
300    }
301
302    /// Try to reserve capacity for `additional` more values, without over-allocating.
303    ///
304    /// Unlike `try_reserve`, this does not deliberately over-allocate the entry capacity to avoid
305    /// frequent re-allocations. However, the underlying data structures may still have internal
306    /// capacity requirements, and the allocator itself may give more space than requested, so this
307    /// cannot be relied upon to be precisely minimal.
308    ///
309    /// Computes in **O(n)** time.
310    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
311        self.map.try_reserve_exact(additional)
312    }
313
314    /// Shrink the capacity of the set as much as possible.
315    ///
316    /// Computes in **O(n)** time.
317    pub fn shrink_to_fit(&mut self) {
318        self.map.shrink_to_fit();
319    }
320
321    /// Shrink the capacity of the set with a lower limit.
322    ///
323    /// Computes in **O(n)** time.
324    pub fn shrink_to(&mut self, min_capacity: usize) {
325        self.map.shrink_to(min_capacity);
326    }
327}
328
329impl<T, S> IndexSet<T, S>
330where
331    T: Hash + Eq,
332    S: BuildHasher,
333{
334    /// Insert the value into the set.
335    ///
336    /// If an equivalent item already exists in the set, it returns
337    /// `false` leaving the original value in the set and without
338    /// altering its insertion order. Otherwise, it inserts the new
339    /// item and returns `true`.
340    ///
341    /// Computes in **O(1)** time (amortized average).
342    pub fn insert(&mut self, value: T) -> bool {
343        self.map.insert(value, ()).is_none()
344    }
345
346    /// Insert the value into the set, and get its index.
347    ///
348    /// If an equivalent item already exists in the set, it returns
349    /// the index of the existing item and `false`, leaving the
350    /// original value in the set and without altering its insertion
351    /// order. Otherwise, it inserts the new item and returns the index
352    /// of the inserted item and `true`.
353    ///
354    /// Computes in **O(1)** time (amortized average).
355    pub fn insert_full(&mut self, value: T) -> (usize, bool) {
356        let (index, existing) = self.map.insert_full(value, ());
357        (index, existing.is_none())
358    }
359
360    /// Insert the value into the set at its ordered position among sorted values.
361    ///
362    /// This is equivalent to finding the position with
363    /// [`binary_search`][Self::binary_search], and if needed calling
364    /// [`insert_before`][Self::insert_before] for a new value.
365    ///
366    /// If the sorted item is found in the set, it returns the index of that
367    /// existing item and `false`, without any change. Otherwise, it inserts the
368    /// new item and returns its sorted index and `true`.
369    ///
370    /// If the existing items are **not** already sorted, then the insertion
371    /// index is unspecified (like [`slice::binary_search`]), but the value
372    /// is moved to or inserted at that position regardless.
373    ///
374    /// Computes in **O(n)** time (average). Instead of repeating calls to
375    /// `insert_sorted`, it may be faster to call batched [`insert`][Self::insert]
376    /// or [`extend`][Self::extend] and only call [`sort`][Self::sort] or
377    /// [`sort_unstable`][Self::sort_unstable] once.
378    pub fn insert_sorted(&mut self, value: T) -> (usize, bool)
379    where
380        T: Ord,
381    {
382        let (index, existing) = self.map.insert_sorted(value, ());
383        (index, existing.is_none())
384    }
385
386    /// Insert the value into the set before the value at the given index, or at the end.
387    ///
388    /// If an equivalent item already exists in the set, it returns `false` leaving the
389    /// original value in the set, but moved to the new position. The returned index
390    /// will either be the given index or one less, depending on how the value moved.
391    /// (See [`shift_insert`](Self::shift_insert) for different behavior here.)
392    ///
393    /// Otherwise, it inserts the new value exactly at the given index and returns `true`.
394    ///
395    /// ***Panics*** if `index` is out of bounds.
396    /// Valid indices are `0..=set.len()` (inclusive).
397    ///
398    /// Computes in **O(n)** time (average).
399    ///
400    /// # Examples
401    ///
402    /// ```
403    /// use indexmap::IndexSet;
404    /// let mut set: IndexSet<char> = ('a'..='z').collect();
405    ///
406    /// // The new value '*' goes exactly at the given index.
407    /// assert_eq!(set.get_index_of(&'*'), None);
408    /// assert_eq!(set.insert_before(10, '*'), (10, true));
409    /// assert_eq!(set.get_index_of(&'*'), Some(10));
410    ///
411    /// // Moving the value 'a' up will shift others down, so this moves *before* 10 to index 9.
412    /// assert_eq!(set.insert_before(10, 'a'), (9, false));
413    /// assert_eq!(set.get_index_of(&'a'), Some(9));
414    /// assert_eq!(set.get_index_of(&'*'), Some(10));
415    ///
416    /// // Moving the value 'z' down will shift others up, so this moves to exactly 10.
417    /// assert_eq!(set.insert_before(10, 'z'), (10, false));
418    /// assert_eq!(set.get_index_of(&'z'), Some(10));
419    /// assert_eq!(set.get_index_of(&'*'), Some(11));
420    ///
421    /// // Moving or inserting before the endpoint is also valid.
422    /// assert_eq!(set.len(), 27);
423    /// assert_eq!(set.insert_before(set.len(), '*'), (26, false));
424    /// assert_eq!(set.get_index_of(&'*'), Some(26));
425    /// assert_eq!(set.insert_before(set.len(), '+'), (27, true));
426    /// assert_eq!(set.get_index_of(&'+'), Some(27));
427    /// assert_eq!(set.len(), 28);
428    /// ```
429    pub fn insert_before(&mut self, index: usize, value: T) -> (usize, bool) {
430        let (index, existing) = self.map.insert_before(index, value, ());
431        (index, existing.is_none())
432    }
433
434    /// Insert the value into the set at the given index.
435    ///
436    /// If an equivalent item already exists in the set, it returns `false` leaving
437    /// the original value in the set, but moved to the given index.
438    /// Note that existing values **cannot** be moved to `index == set.len()`!
439    /// (See [`insert_before`](Self::insert_before) for different behavior here.)
440    ///
441    /// Otherwise, it inserts the new value at the given index and returns `true`.
442    ///
443    /// ***Panics*** if `index` is out of bounds.
444    /// Valid indices are `0..set.len()` (exclusive) when moving an existing value, or
445    /// `0..=set.len()` (inclusive) when inserting a new value.
446    ///
447    /// Computes in **O(n)** time (average).
448    ///
449    /// # Examples
450    ///
451    /// ```
452    /// use indexmap::IndexSet;
453    /// let mut set: IndexSet<char> = ('a'..='z').collect();
454    ///
455    /// // The new value '*' goes exactly at the given index.
456    /// assert_eq!(set.get_index_of(&'*'), None);
457    /// assert_eq!(set.shift_insert(10, '*'), true);
458    /// assert_eq!(set.get_index_of(&'*'), Some(10));
459    ///
460    /// // Moving the value 'a' up to 10 will shift others down, including the '*' that was at 10.
461    /// assert_eq!(set.shift_insert(10, 'a'), false);
462    /// assert_eq!(set.get_index_of(&'a'), Some(10));
463    /// assert_eq!(set.get_index_of(&'*'), Some(9));
464    ///
465    /// // Moving the value 'z' down to 9 will shift others up, including the '*' that was at 9.
466    /// assert_eq!(set.shift_insert(9, 'z'), false);
467    /// assert_eq!(set.get_index_of(&'z'), Some(9));
468    /// assert_eq!(set.get_index_of(&'*'), Some(10));
469    ///
470    /// // Existing values can move to len-1 at most, but new values can insert at the endpoint.
471    /// assert_eq!(set.len(), 27);
472    /// assert_eq!(set.shift_insert(set.len() - 1, '*'), false);
473    /// assert_eq!(set.get_index_of(&'*'), Some(26));
474    /// assert_eq!(set.shift_insert(set.len(), '+'), true);
475    /// assert_eq!(set.get_index_of(&'+'), Some(27));
476    /// assert_eq!(set.len(), 28);
477    /// ```
478    ///
479    /// ```should_panic
480    /// use indexmap::IndexSet;
481    /// let mut set: IndexSet<char> = ('a'..='z').collect();
482    ///
483    /// // This is an invalid index for moving an existing value!
484    /// set.shift_insert(set.len(), 'a');
485    /// ```
486    pub fn shift_insert(&mut self, index: usize, value: T) -> bool {
487        self.map.shift_insert(index, value, ()).is_none()
488    }
489
490    /// Adds a value to the set, replacing the existing value, if any, that is
491    /// equal to the given one, without altering its insertion order. Returns
492    /// the replaced value.
493    ///
494    /// Computes in **O(1)** time (average).
495    pub fn replace(&mut self, value: T) -> Option<T> {
496        self.replace_full(value).1
497    }
498
499    /// Adds a value to the set, replacing the existing value, if any, that is
500    /// equal to the given one, without altering its insertion order. Returns
501    /// the index of the item and its replaced value.
502    ///
503    /// Computes in **O(1)** time (average).
504    pub fn replace_full(&mut self, value: T) -> (usize, Option<T>) {
505        let hash = self.map.hash(&value);
506        match self.map.core.replace_full(hash, value, ()) {
507            (i, Some((replaced, ()))) => (i, Some(replaced)),
508            (i, None) => (i, None),
509        }
510    }
511
512    /// Return an iterator over the values that are in `self` but not `other`.
513    ///
514    /// Values are produced in the same order that they appear in `self`.
515    pub fn difference<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Difference<'a, T, S2>
516    where
517        S2: BuildHasher,
518    {
519        Difference::new(self, other)
520    }
521
522    /// Return an iterator over the values that are in `self` or `other`,
523    /// but not in both.
524    ///
525    /// Values from `self` are produced in their original order, followed by
526    /// values from `other` in their original order.
527    pub fn symmetric_difference<'a, S2>(
528        &'a self,
529        other: &'a IndexSet<T, S2>,
530    ) -> SymmetricDifference<'a, T, S, S2>
531    where
532        S2: BuildHasher,
533    {
534        SymmetricDifference::new(self, other)
535    }
536
537    /// Return an iterator over the values that are in both `self` and `other`.
538    ///
539    /// Values are produced in the same order that they appear in `self`.
540    pub fn intersection<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Intersection<'a, T, S2>
541    where
542        S2: BuildHasher,
543    {
544        Intersection::new(self, other)
545    }
546
547    /// Return an iterator over all values that are in `self` or `other`.
548    ///
549    /// Values from `self` are produced in their original order, followed by
550    /// values that are unique to `other` in their original order.
551    pub fn union<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Union<'a, T, S>
552    where
553        S2: BuildHasher,
554    {
555        Union::new(self, other)
556    }
557
558    /// Creates a splicing iterator that replaces the specified range in the set
559    /// with the given `replace_with` iterator and yields the removed items.
560    /// `replace_with` does not need to be the same length as `range`.
561    ///
562    /// The `range` is removed even if the iterator is not consumed until the
563    /// end. It is unspecified how many elements are removed from the set if the
564    /// `Splice` value is leaked.
565    ///
566    /// The input iterator `replace_with` is only consumed when the `Splice`
567    /// value is dropped. If a value from the iterator matches an existing entry
568    /// in the set (outside of `range`), then the original will be unchanged.
569    /// Otherwise, the new value will be inserted in the replaced `range`.
570    ///
571    /// ***Panics*** if the starting point is greater than the end point or if
572    /// the end point is greater than the length of the set.
573    ///
574    /// # Examples
575    ///
576    /// ```
577    /// use indexmap::IndexSet;
578    ///
579    /// let mut set = IndexSet::from([0, 1, 2, 3, 4]);
580    /// let new = [5, 4, 3, 2, 1];
581    /// let removed: Vec<_> = set.splice(2..4, new).collect();
582    ///
583    /// // 1 and 4 kept their positions, while 5, 3, and 2 were newly inserted.
584    /// assert!(set.into_iter().eq([0, 1, 5, 3, 2, 4]));
585    /// assert_eq!(removed, &[2, 3]);
586    /// ```
587    pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, T, S>
588    where
589        R: RangeBounds<usize>,
590        I: IntoIterator<Item = T>,
591    {
592        Splice::new(self, range, replace_with.into_iter())
593    }
594
595    /// Moves all values from `other` into `self`, leaving `other` empty.
596    ///
597    /// This is equivalent to calling [`insert`][Self::insert] for each value
598    /// from `other` in order, which means that values that already exist
599    /// in `self` are unchanged in their current position.
600    ///
601    /// See also [`union`][Self::union] to iterate the combined values by
602    /// reference, without modifying `self` or `other`.
603    ///
604    /// # Examples
605    ///
606    /// ```
607    /// use indexmap::IndexSet;
608    ///
609    /// let mut a = IndexSet::from([3, 2, 1]);
610    /// let mut b = IndexSet::from([3, 4, 5]);
611    /// let old_capacity = b.capacity();
612    ///
613    /// a.append(&mut b);
614    ///
615    /// assert_eq!(a.len(), 5);
616    /// assert_eq!(b.len(), 0);
617    /// assert_eq!(b.capacity(), old_capacity);
618    ///
619    /// assert!(a.iter().eq(&[3, 2, 1, 4, 5]));
620    /// ```
621    pub fn append<S2>(&mut self, other: &mut IndexSet<T, S2>) {
622        self.map.append(&mut other.map);
623    }
624}
625
626impl<T, S> IndexSet<T, S>
627where
628    S: BuildHasher,
629{
630    /// Return `true` if an equivalent to `value` exists in the set.
631    ///
632    /// Computes in **O(1)** time (average).
633    pub fn contains<Q>(&self, value: &Q) -> bool
634    where
635        Q: ?Sized + Hash + Equivalent<T>,
636    {
637        self.map.contains_key(value)
638    }
639
640    /// Return a reference to the value stored in the set, if it is present,
641    /// else `None`.
642    ///
643    /// Computes in **O(1)** time (average).
644    pub fn get<Q>(&self, value: &Q) -> Option<&T>
645    where
646        Q: ?Sized + Hash + Equivalent<T>,
647    {
648        self.map.get_key_value(value).map(|(x, &())| x)
649    }
650
651    /// Return item index and value
652    pub fn get_full<Q>(&self, value: &Q) -> Option<(usize, &T)>
653    where
654        Q: ?Sized + Hash + Equivalent<T>,
655    {
656        self.map.get_full(value).map(|(i, x, &())| (i, x))
657    }
658
659    /// Return item index, if it exists in the set
660    ///
661    /// Computes in **O(1)** time (average).
662    pub fn get_index_of<Q>(&self, value: &Q) -> Option<usize>
663    where
664        Q: ?Sized + Hash + Equivalent<T>,
665    {
666        self.map.get_index_of(value)
667    }
668
669    /// Remove the value from the set, and return `true` if it was present.
670    ///
671    /// **NOTE:** This is equivalent to [`.swap_remove(value)`][Self::swap_remove], replacing this
672    /// value's position with the last element, and it is deprecated in favor of calling that
673    /// explicitly. If you need to preserve the relative order of the values in the set, use
674    /// [`.shift_remove(value)`][Self::shift_remove] instead.
675    #[deprecated(note = "`remove` disrupts the set order -- \
676        use `swap_remove` or `shift_remove` for explicit behavior.")]
677    pub fn remove<Q>(&mut self, value: &Q) -> bool
678    where
679        Q: ?Sized + Hash + Equivalent<T>,
680    {
681        self.swap_remove(value)
682    }
683
684    /// Remove the value from the set, and return `true` if it was present.
685    ///
686    /// Like [`Vec::swap_remove`], the value is removed by swapping it with the
687    /// last element of the set and popping it off. **This perturbs
688    /// the position of what used to be the last element!**
689    ///
690    /// Return `false` if `value` was not in the set.
691    ///
692    /// Computes in **O(1)** time (average).
693    pub fn swap_remove<Q>(&mut self, value: &Q) -> bool
694    where
695        Q: ?Sized + Hash + Equivalent<T>,
696    {
697        self.map.swap_remove(value).is_some()
698    }
699
700    /// Remove the value from the set, and return `true` if it was present.
701    ///
702    /// Like [`Vec::remove`], the value is removed by shifting all of the
703    /// elements that follow it, preserving their relative order.
704    /// **This perturbs the index of all of those elements!**
705    ///
706    /// Return `false` if `value` was not in the set.
707    ///
708    /// Computes in **O(n)** time (average).
709    pub fn shift_remove<Q>(&mut self, value: &Q) -> bool
710    where
711        Q: ?Sized + Hash + Equivalent<T>,
712    {
713        self.map.shift_remove(value).is_some()
714    }
715
716    /// Removes and returns the value in the set, if any, that is equal to the
717    /// given one.
718    ///
719    /// **NOTE:** This is equivalent to [`.swap_take(value)`][Self::swap_take], replacing this
720    /// value's position with the last element, and it is deprecated in favor of calling that
721    /// explicitly. If you need to preserve the relative order of the values in the set, use
722    /// [`.shift_take(value)`][Self::shift_take] instead.
723    #[deprecated(note = "`take` disrupts the set order -- \
724        use `swap_take` or `shift_take` for explicit behavior.")]
725    pub fn take<Q>(&mut self, value: &Q) -> Option<T>
726    where
727        Q: ?Sized + Hash + Equivalent<T>,
728    {
729        self.swap_take(value)
730    }
731
732    /// Removes and returns the value in the set, if any, that is equal to the
733    /// given one.
734    ///
735    /// Like [`Vec::swap_remove`], the value is removed by swapping it with the
736    /// last element of the set and popping it off. **This perturbs
737    /// the position of what used to be the last element!**
738    ///
739    /// Return `None` if `value` was not in the set.
740    ///
741    /// Computes in **O(1)** time (average).
742    pub fn swap_take<Q>(&mut self, value: &Q) -> Option<T>
743    where
744        Q: ?Sized + Hash + Equivalent<T>,
745    {
746        self.map.swap_remove_entry(value).map(|(x, ())| x)
747    }
748
749    /// Removes and returns the value in the set, if any, that is equal to the
750    /// given one.
751    ///
752    /// Like [`Vec::remove`], the value is removed by shifting all of the
753    /// elements that follow it, preserving their relative order.
754    /// **This perturbs the index of all of those elements!**
755    ///
756    /// Return `None` if `value` was not in the set.
757    ///
758    /// Computes in **O(n)** time (average).
759    pub fn shift_take<Q>(&mut self, value: &Q) -> Option<T>
760    where
761        Q: ?Sized + Hash + Equivalent<T>,
762    {
763        self.map.shift_remove_entry(value).map(|(x, ())| x)
764    }
765
766    /// Remove the value from the set return it and the index it had.
767    ///
768    /// Like [`Vec::swap_remove`], the value is removed by swapping it with the
769    /// last element of the set and popping it off. **This perturbs
770    /// the position of what used to be the last element!**
771    ///
772    /// Return `None` if `value` was not in the set.
773    pub fn swap_remove_full<Q>(&mut self, value: &Q) -> Option<(usize, T)>
774    where
775        Q: ?Sized + Hash + Equivalent<T>,
776    {
777        self.map.swap_remove_full(value).map(|(i, x, ())| (i, x))
778    }
779
780    /// Remove the value from the set return it and the index it had.
781    ///
782    /// Like [`Vec::remove`], the value is removed by shifting all of the
783    /// elements that follow it, preserving their relative order.
784    /// **This perturbs the index of all of those elements!**
785    ///
786    /// Return `None` if `value` was not in the set.
787    pub fn shift_remove_full<Q>(&mut self, value: &Q) -> Option<(usize, T)>
788    where
789        Q: ?Sized + Hash + Equivalent<T>,
790    {
791        self.map.shift_remove_full(value).map(|(i, x, ())| (i, x))
792    }
793}
794
795impl<T, S> IndexSet<T, S> {
796    /// Remove the last value
797    ///
798    /// This preserves the order of the remaining elements.
799    ///
800    /// Computes in **O(1)** time (average).
801    #[doc(alias = "pop_last")] // like `BTreeSet`
802    pub fn pop(&mut self) -> Option<T> {
803        self.map.pop().map(|(x, ())| x)
804    }
805
806    /// Scan through each value in the set and keep those where the
807    /// closure `keep` returns `true`.
808    ///
809    /// The elements are visited in order, and remaining elements keep their
810    /// order.
811    ///
812    /// Computes in **O(n)** time (average).
813    pub fn retain<F>(&mut self, mut keep: F)
814    where
815        F: FnMut(&T) -> bool,
816    {
817        self.map.retain(move |x, &mut ()| keep(x))
818    }
819
820    /// Sort the set’s values by their default ordering.
821    ///
822    /// This is a stable sort -- but equivalent values should not normally coexist in
823    /// a set at all, so [`sort_unstable`][Self::sort_unstable] is preferred
824    /// because it is generally faster and doesn't allocate auxiliary memory.
825    ///
826    /// See [`sort_by`](Self::sort_by) for details.
827    pub fn sort(&mut self)
828    where
829        T: Ord,
830    {
831        self.map.sort_keys()
832    }
833
834    /// Sort the set’s values in place using the comparison function `cmp`.
835    ///
836    /// Computes in **O(n log n)** time and **O(n)** space. The sort is stable.
837    pub fn sort_by<F>(&mut self, mut cmp: F)
838    where
839        F: FnMut(&T, &T) -> Ordering,
840    {
841        self.map.sort_by(move |a, _, b, _| cmp(a, b));
842    }
843
844    /// Sort the values of the set and return a by-value iterator of
845    /// the values with the result.
846    ///
847    /// The sort is stable.
848    pub fn sorted_by<F>(self, mut cmp: F) -> IntoIter<T>
849    where
850        F: FnMut(&T, &T) -> Ordering,
851    {
852        let mut entries = self.into_entries();
853        entries.sort_by(move |a, b| cmp(&a.key, &b.key));
854        IntoIter::new(entries)
855    }
856
857    /// Sort the set's values by their default ordering.
858    ///
859    /// See [`sort_unstable_by`](Self::sort_unstable_by) for details.
860    pub fn sort_unstable(&mut self)
861    where
862        T: Ord,
863    {
864        self.map.sort_unstable_keys()
865    }
866
867    /// Sort the set's values in place using the comparison function `cmp`.
868    ///
869    /// Computes in **O(n log n)** time. The sort is unstable.
870    pub fn sort_unstable_by<F>(&mut self, mut cmp: F)
871    where
872        F: FnMut(&T, &T) -> Ordering,
873    {
874        self.map.sort_unstable_by(move |a, _, b, _| cmp(a, b))
875    }
876
877    /// Sort the values of the set and return a by-value iterator of
878    /// the values with the result.
879    pub fn sorted_unstable_by<F>(self, mut cmp: F) -> IntoIter<T>
880    where
881        F: FnMut(&T, &T) -> Ordering,
882    {
883        let mut entries = self.into_entries();
884        entries.sort_unstable_by(move |a, b| cmp(&a.key, &b.key));
885        IntoIter::new(entries)
886    }
887
888    /// Sort the set’s values in place using a key extraction function.
889    ///
890    /// During sorting, the function is called at most once per entry, by using temporary storage
891    /// to remember the results of its evaluation. The order of calls to the function is
892    /// unspecified and may change between versions of `indexmap` or the standard library.
893    ///
894    /// Computes in **O(m n + n log n + c)** time () and **O(n)** space, where the function is
895    /// **O(m)**, *n* is the length of the map, and *c* the capacity. The sort is stable.
896    pub fn sort_by_cached_key<K, F>(&mut self, mut sort_key: F)
897    where
898        K: Ord,
899        F: FnMut(&T) -> K,
900    {
901        self.with_entries(move |entries| {
902            entries.sort_by_cached_key(move |a| sort_key(&a.key));
903        });
904    }
905
906    /// Search over a sorted set for a value.
907    ///
908    /// Returns the position where that value is present, or the position where it can be inserted
909    /// to maintain the sort. See [`slice::binary_search`] for more details.
910    ///
911    /// Computes in **O(log(n))** time, which is notably less scalable than looking the value up
912    /// using [`get_index_of`][IndexSet::get_index_of], but this can also position missing values.
913    pub fn binary_search(&self, x: &T) -> Result<usize, usize>
914    where
915        T: Ord,
916    {
917        self.as_slice().binary_search(x)
918    }
919
920    /// Search over a sorted set with a comparator function.
921    ///
922    /// Returns the position where that value is present, or the position where it can be inserted
923    /// to maintain the sort. See [`slice::binary_search_by`] for more details.
924    ///
925    /// Computes in **O(log(n))** time.
926    #[inline]
927    pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize>
928    where
929        F: FnMut(&'a T) -> Ordering,
930    {
931        self.as_slice().binary_search_by(f)
932    }
933
934    /// Search over a sorted set with an extraction function.
935    ///
936    /// Returns the position where that value is present, or the position where it can be inserted
937    /// to maintain the sort. See [`slice::binary_search_by_key`] for more details.
938    ///
939    /// Computes in **O(log(n))** time.
940    #[inline]
941    pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result<usize, usize>
942    where
943        F: FnMut(&'a T) -> B,
944        B: Ord,
945    {
946        self.as_slice().binary_search_by_key(b, f)
947    }
948
949    /// Returns the index of the partition point of a sorted set according to the given predicate
950    /// (the index of the first element of the second partition).
951    ///
952    /// See [`slice::partition_point`] for more details.
953    ///
954    /// Computes in **O(log(n))** time.
955    #[must_use]
956    pub fn partition_point<P>(&self, pred: P) -> usize
957    where
958        P: FnMut(&T) -> bool,
959    {
960        self.as_slice().partition_point(pred)
961    }
962
963    /// Reverses the order of the set’s values in place.
964    ///
965    /// Computes in **O(n)** time and **O(1)** space.
966    pub fn reverse(&mut self) {
967        self.map.reverse()
968    }
969
970    /// Returns a slice of all the values in the set.
971    ///
972    /// Computes in **O(1)** time.
973    pub fn as_slice(&self) -> &Slice<T> {
974        Slice::from_slice(self.as_entries())
975    }
976
977    /// Converts into a boxed slice of all the values in the set.
978    ///
979    /// Note that this will drop the inner hash table and any excess capacity.
980    pub fn into_boxed_slice(self) -> Box<Slice<T>> {
981        Slice::from_boxed(self.into_entries().into_boxed_slice())
982    }
983
984    /// Get a value by index
985    ///
986    /// Valid indices are `0 <= index < self.len()`.
987    ///
988    /// Computes in **O(1)** time.
989    pub fn get_index(&self, index: usize) -> Option<&T> {
990        self.as_entries().get(index).map(Bucket::key_ref)
991    }
992
993    /// Returns a slice of values in the given range of indices.
994    ///
995    /// Valid indices are `0 <= index < self.len()`.
996    ///
997    /// Computes in **O(1)** time.
998    pub fn get_range<R: RangeBounds<usize>>(&self, range: R) -> Option<&Slice<T>> {
999        let entries = self.as_entries();
1000        let range = try_simplify_range(range, entries.len())?;
1001        entries.get(range).map(Slice::from_slice)
1002    }
1003
1004    /// Get the first value
1005    ///
1006    /// Computes in **O(1)** time.
1007    pub fn first(&self) -> Option<&T> {
1008        self.as_entries().first().map(Bucket::key_ref)
1009    }
1010
1011    /// Get the last value
1012    ///
1013    /// Computes in **O(1)** time.
1014    pub fn last(&self) -> Option<&T> {
1015        self.as_entries().last().map(Bucket::key_ref)
1016    }
1017
1018    /// Remove the value by index
1019    ///
1020    /// Valid indices are `0 <= index < self.len()`.
1021    ///
1022    /// Like [`Vec::swap_remove`], the value is removed by swapping it with the
1023    /// last element of the set and popping it off. **This perturbs
1024    /// the position of what used to be the last element!**
1025    ///
1026    /// Computes in **O(1)** time (average).
1027    pub fn swap_remove_index(&mut self, index: usize) -> Option<T> {
1028        self.map.swap_remove_index(index).map(|(x, ())| x)
1029    }
1030
1031    /// Remove the value by index
1032    ///
1033    /// Valid indices are `0 <= index < self.len()`.
1034    ///
1035    /// Like [`Vec::remove`], the value is removed by shifting all of the
1036    /// elements that follow it, preserving their relative order.
1037    /// **This perturbs the index of all of those elements!**
1038    ///
1039    /// Computes in **O(n)** time (average).
1040    pub fn shift_remove_index(&mut self, index: usize) -> Option<T> {
1041        self.map.shift_remove_index(index).map(|(x, ())| x)
1042    }
1043
1044    /// Moves the position of a value from one index to another
1045    /// by shifting all other values in-between.
1046    ///
1047    /// * If `from < to`, the other values will shift down while the targeted value moves up.
1048    /// * If `from > to`, the other values will shift up while the targeted value moves down.
1049    ///
1050    /// ***Panics*** if `from` or `to` are out of bounds.
1051    ///
1052    /// Computes in **O(n)** time (average).
1053    pub fn move_index(&mut self, from: usize, to: usize) {
1054        self.map.move_index(from, to)
1055    }
1056
1057    /// Swaps the position of two values in the set.
1058    ///
1059    /// ***Panics*** if `a` or `b` are out of bounds.
1060    ///
1061    /// Computes in **O(1)** time (average).
1062    pub fn swap_indices(&mut self, a: usize, b: usize) {
1063        self.map.swap_indices(a, b)
1064    }
1065}
1066
1067/// Access [`IndexSet`] values at indexed positions.
1068///
1069/// # Examples
1070///
1071/// ```
1072/// use indexmap::IndexSet;
1073///
1074/// let mut set = IndexSet::new();
1075/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1076///     set.insert(word.to_string());
1077/// }
1078/// assert_eq!(set[0], "Lorem");
1079/// assert_eq!(set[1], "ipsum");
1080/// set.reverse();
1081/// assert_eq!(set[0], "amet");
1082/// assert_eq!(set[1], "sit");
1083/// set.sort();
1084/// assert_eq!(set[0], "Lorem");
1085/// assert_eq!(set[1], "amet");
1086/// ```
1087///
1088/// ```should_panic
1089/// use indexmap::IndexSet;
1090///
1091/// let mut set = IndexSet::new();
1092/// set.insert("foo");
1093/// println!("{:?}", set[10]); // panics!
1094/// ```
1095impl<T, S> Index<usize> for IndexSet<T, S> {
1096    type Output = T;
1097
1098    /// Returns a reference to the value at the supplied `index`.
1099    ///
1100    /// ***Panics*** if `index` is out of bounds.
1101    fn index(&self, index: usize) -> &T {
1102        self.get_index(index)
1103            .expect("IndexSet: index out of bounds")
1104    }
1105}
1106
1107impl<T, S> FromIterator<T> for IndexSet<T, S>
1108where
1109    T: Hash + Eq,
1110    S: BuildHasher + Default,
1111{
1112    fn from_iter<I: IntoIterator<Item = T>>(iterable: I) -> Self {
1113        let iter = iterable.into_iter().map(|x| (x, ()));
1114        IndexSet {
1115            map: IndexMap::from_iter(iter),
1116        }
1117    }
1118}
1119
1120#[cfg(feature = "std")]
1121#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
1122impl<T, const N: usize> From<[T; N]> for IndexSet<T, RandomState>
1123where
1124    T: Eq + Hash,
1125{
1126    /// # Examples
1127    ///
1128    /// ```
1129    /// use indexmap::IndexSet;
1130    ///
1131    /// let set1 = IndexSet::from([1, 2, 3, 4]);
1132    /// let set2: IndexSet<_> = [1, 2, 3, 4].into();
1133    /// assert_eq!(set1, set2);
1134    /// ```
1135    fn from(arr: [T; N]) -> Self {
1136        Self::from_iter(arr)
1137    }
1138}
1139
1140impl<T, S> Extend<T> for IndexSet<T, S>
1141where
1142    T: Hash + Eq,
1143    S: BuildHasher,
1144{
1145    fn extend<I: IntoIterator<Item = T>>(&mut self, iterable: I) {
1146        let iter = iterable.into_iter().map(|x| (x, ()));
1147        self.map.extend(iter);
1148    }
1149}
1150
1151impl<'a, T, S> Extend<&'a T> for IndexSet<T, S>
1152where
1153    T: Hash + Eq + Copy + 'a,
1154    S: BuildHasher,
1155{
1156    fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iterable: I) {
1157        let iter = iterable.into_iter().copied();
1158        self.extend(iter);
1159    }
1160}
1161
1162impl<T, S> Default for IndexSet<T, S>
1163where
1164    S: Default,
1165{
1166    /// Return an empty [`IndexSet`]
1167    fn default() -> Self {
1168        IndexSet {
1169            map: IndexMap::default(),
1170        }
1171    }
1172}
1173
1174impl<T, S1, S2> PartialEq<IndexSet<T, S2>> for IndexSet<T, S1>
1175where
1176    T: Hash + Eq,
1177    S1: BuildHasher,
1178    S2: BuildHasher,
1179{
1180    fn eq(&self, other: &IndexSet<T, S2>) -> bool {
1181        self.len() == other.len() && self.is_subset(other)
1182    }
1183}
1184
1185impl<T, S> Eq for IndexSet<T, S>
1186where
1187    T: Eq + Hash,
1188    S: BuildHasher,
1189{
1190}
1191
1192impl<T, S> IndexSet<T, S>
1193where
1194    T: Eq + Hash,
1195    S: BuildHasher,
1196{
1197    /// Returns `true` if `self` has no elements in common with `other`.
1198    pub fn is_disjoint<S2>(&self, other: &IndexSet<T, S2>) -> bool
1199    where
1200        S2: BuildHasher,
1201    {
1202        if self.len() <= other.len() {
1203            self.iter().all(move |value| !other.contains(value))
1204        } else {
1205            other.iter().all(move |value| !self.contains(value))
1206        }
1207    }
1208
1209    /// Returns `true` if all elements of `self` are contained in `other`.
1210    pub fn is_subset<S2>(&self, other: &IndexSet<T, S2>) -> bool
1211    where
1212        S2: BuildHasher,
1213    {
1214        self.len() <= other.len() && self.iter().all(move |value| other.contains(value))
1215    }
1216
1217    /// Returns `true` if all elements of `other` are contained in `self`.
1218    pub fn is_superset<S2>(&self, other: &IndexSet<T, S2>) -> bool
1219    where
1220        S2: BuildHasher,
1221    {
1222        other.is_subset(self)
1223    }
1224}
1225
1226impl<T, S1, S2> BitAnd<&IndexSet<T, S2>> for &IndexSet<T, S1>
1227where
1228    T: Eq + Hash + Clone,
1229    S1: BuildHasher + Default,
1230    S2: BuildHasher,
1231{
1232    type Output = IndexSet<T, S1>;
1233
1234    /// Returns the set intersection, cloned into a new set.
1235    ///
1236    /// Values are collected in the same order that they appear in `self`.
1237    fn bitand(self, other: &IndexSet<T, S2>) -> Self::Output {
1238        self.intersection(other).cloned().collect()
1239    }
1240}
1241
1242impl<T, S1, S2> BitOr<&IndexSet<T, S2>> for &IndexSet<T, S1>
1243where
1244    T: Eq + Hash + Clone,
1245    S1: BuildHasher + Default,
1246    S2: BuildHasher,
1247{
1248    type Output = IndexSet<T, S1>;
1249
1250    /// Returns the set union, cloned into a new set.
1251    ///
1252    /// Values from `self` are collected in their original order, followed by
1253    /// values that are unique to `other` in their original order.
1254    fn bitor(self, other: &IndexSet<T, S2>) -> Self::Output {
1255        self.union(other).cloned().collect()
1256    }
1257}
1258
1259impl<T, S1, S2> BitXor<&IndexSet<T, S2>> for &IndexSet<T, S1>
1260where
1261    T: Eq + Hash + Clone,
1262    S1: BuildHasher + Default,
1263    S2: BuildHasher,
1264{
1265    type Output = IndexSet<T, S1>;
1266
1267    /// Returns the set symmetric-difference, cloned into a new set.
1268    ///
1269    /// Values from `self` are collected in their original order, followed by
1270    /// values from `other` in their original order.
1271    fn bitxor(self, other: &IndexSet<T, S2>) -> Self::Output {
1272        self.symmetric_difference(other).cloned().collect()
1273    }
1274}
1275
1276impl<T, S1, S2> Sub<&IndexSet<T, S2>> for &IndexSet<T, S1>
1277where
1278    T: Eq + Hash + Clone,
1279    S1: BuildHasher + Default,
1280    S2: BuildHasher,
1281{
1282    type Output = IndexSet<T, S1>;
1283
1284    /// Returns the set difference, cloned into a new set.
1285    ///
1286    /// Values are collected in the same order that they appear in `self`.
1287    fn sub(self, other: &IndexSet<T, S2>) -> Self::Output {
1288        self.difference(other).cloned().collect()
1289    }
1290}