plotters/coord/ranged3d/
cartesian3d.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
use super::{ProjectionMatrix, ProjectionMatrixBuilder};
use crate::coord::ranged1d::Ranged;
use crate::coord::CoordTranslate;
use plotters_backend::BackendCoord;

use std::ops::Range;

/// A 3D cartesian coordinate system
#[derive(Clone)]
pub struct Cartesian3d<X: Ranged, Y: Ranged, Z: Ranged> {
    pub(crate) logic_x: X,
    pub(crate) logic_y: Y,
    pub(crate) logic_z: Z,
    coord_size: (i32, i32, i32),
    projection: ProjectionMatrix,
}

impl<X: Ranged, Y: Ranged, Z: Ranged> Cartesian3d<X, Y, Z> {
    fn compute_default_size(actual_x: Range<i32>, actual_y: Range<i32>) -> i32 {
        (actual_x.end - actual_x.start).min(actual_y.end - actual_y.start) * 4 / 5
    }
    fn create_projection<F: FnOnce(ProjectionMatrixBuilder) -> ProjectionMatrix>(
        actual_x: Range<i32>,
        actual_y: Range<i32>,
        coord_size: (i32, i32, i32),
        f: F,
    ) -> ProjectionMatrix {
        let center_3d = (coord_size.0 / 2, coord_size.1 / 2, coord_size.2 / 2);
        let center_2d = (
            (actual_x.end + actual_x.start) / 2,
            (actual_y.end + actual_y.start) / 2,
        );
        let mut pb = ProjectionMatrixBuilder::new();
        pb.set_pivot(center_3d, center_2d);
        f(pb)
    }
    /// Creates a Cartesian3d object with the given projection.
    pub fn with_projection<
        SX: Into<X>,
        SY: Into<Y>,
        SZ: Into<Z>,
        F: FnOnce(ProjectionMatrixBuilder) -> ProjectionMatrix,
    >(
        logic_x: SX,
        logic_y: SY,
        logic_z: SZ,
        (actual_x, actual_y): (Range<i32>, Range<i32>),
        build_projection_matrix: F,
    ) -> Self {
        let default_size = Self::compute_default_size(actual_x.clone(), actual_y.clone());
        let coord_size = (default_size, default_size, default_size);
        Self {
            logic_x: logic_x.into(),
            logic_y: logic_y.into(),
            logic_z: logic_z.into(),
            coord_size,
            projection: Self::create_projection(
                actual_x,
                actual_y,
                coord_size,
                build_projection_matrix,
            ),
        }
    }

    /// Sets the pixel sizes and projections according to the given ranges.
    pub fn set_coord_pixel_range(
        &mut self,
        actual_x: Range<i32>,
        actual_y: Range<i32>,
        coord_size: (i32, i32, i32),
    ) -> &mut Self {
        self.coord_size = coord_size;
        self.projection =
            Self::create_projection(actual_x, actual_y, coord_size, |pb| pb.into_matrix());
        self
    }

    /// Set the projection matrix
    pub fn set_projection<F: FnOnce(ProjectionMatrixBuilder) -> ProjectionMatrix>(
        &mut self,
        actual_x: Range<i32>,
        actual_y: Range<i32>,
        f: F,
    ) -> &mut Self {
        self.projection = Self::create_projection(actual_x, actual_y, self.coord_size, f);
        self
    }

    /// Create a new coordinate
    pub fn new<SX: Into<X>, SY: Into<Y>, SZ: Into<Z>>(
        logic_x: SX,
        logic_y: SY,
        logic_z: SZ,
        (actual_x, actual_y): (Range<i32>, Range<i32>),
    ) -> Self {
        Self::with_projection(logic_x, logic_y, logic_z, (actual_x, actual_y), |pb| {
            pb.into_matrix()
        })
    }
    /// Get the projection matrix
    pub fn projection(&self) -> &ProjectionMatrix {
        &self.projection
    }

    /// Do not project, only transform the guest coordinate system
    pub fn map_3d(&self, x: &X::ValueType, y: &Y::ValueType, z: &Z::ValueType) -> (i32, i32, i32) {
        (
            self.logic_x.map(x, (0, self.coord_size.0)),
            self.logic_y.map(y, (0, self.coord_size.1)),
            self.logic_z.map(z, (0, self.coord_size.2)),
        )
    }

    /// Get the depth of the projection
    pub fn projected_depth(&self, x: &X::ValueType, y: &Y::ValueType, z: &Z::ValueType) -> i32 {
        self.projection.projected_depth(self.map_3d(x, y, z))
    }
}

impl<X: Ranged, Y: Ranged, Z: Ranged> CoordTranslate for Cartesian3d<X, Y, Z> {
    type From = (X::ValueType, Y::ValueType, Z::ValueType);
    fn translate(&self, coord: &Self::From) -> BackendCoord {
        let pixel_coord_3d = self.map_3d(&coord.0, &coord.1, &coord.2);
        self.projection * pixel_coord_3d
    }

    fn depth(&self, coord: &Self::From) -> i32 {
        self.projected_depth(&coord.0, &coord.1, &coord.2)
    }
}