scopeguard/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
#![cfg_attr(not(any(test, feature = "use_std")), no_std)]
#![doc(html_root_url = "https://docs.rs/scopeguard/1/")]
//! A scope guard will run a given closure when it goes out of scope,
//! even if the code between panics.
//! (as long as panic doesn't abort)
//!
//! # Examples
//!
//! ## Hello World
//!
//! This example creates a scope guard with an example function:
//!
//! ```
//! extern crate scopeguard;
//!
//! fn f() {
//! let _guard = scopeguard::guard((), |_| {
//! println!("Hello Scope Exit!");
//! });
//!
//! // rest of the code here.
//!
//! // Here, at the end of `_guard`'s scope, the guard's closure is called.
//! // It is also called if we exit this scope through unwinding instead.
//! }
//! # fn main() {
//! # f();
//! # }
//! ```
//!
//! ## `defer!`
//!
//! Use the `defer` macro to run an operation at scope exit,
//! either regular scope exit or during unwinding from a panic.
//!
//! ```
//! #[macro_use(defer)] extern crate scopeguard;
//!
//! use std::cell::Cell;
//!
//! fn main() {
//! // use a cell to observe drops during and after the scope guard is active
//! let drop_counter = Cell::new(0);
//! {
//! // Create a scope guard using `defer!` for the current scope
//! defer! {
//! drop_counter.set(1 + drop_counter.get());
//! }
//!
//! // Do regular operations here in the meantime.
//!
//! // Just before scope exit: it hasn't run yet.
//! assert_eq!(drop_counter.get(), 0);
//!
//! // The following scope end is where the defer closure is called
//! }
//! assert_eq!(drop_counter.get(), 1);
//! }
//! ```
//!
//! ## Scope Guard with Value
//!
//! If the scope guard closure needs to access an outer value that is also
//! mutated outside of the scope guard, then you may want to use the scope guard
//! with a value. The guard works like a smart pointer, so the inner value can
//! be accessed by reference or by mutable reference.
//!
//! ### 1. The guard owns a file
//!
//! In this example, the scope guard owns a file and ensures pending writes are
//! synced at scope exit.
//!
//! ```
//! extern crate scopeguard;
//!
//! use std::fs::*;
//! use std::io::{self, Write};
//! # // Mock file so that we don't actually write a file
//! # struct MockFile;
//! # impl MockFile {
//! # fn create(_s: &str) -> io::Result<Self> { Ok(MockFile) }
//! # fn write_all(&self, _b: &[u8]) -> io::Result<()> { Ok(()) }
//! # fn sync_all(&self) -> io::Result<()> { Ok(()) }
//! # }
//! # use self::MockFile as File;
//!
//! fn try_main() -> io::Result<()> {
//! let f = File::create("newfile.txt")?;
//! let mut file = scopeguard::guard(f, |f| {
//! // ensure we flush file at return or panic
//! let _ = f.sync_all();
//! });
//! // Access the file through the scope guard itself
//! file.write_all(b"test me\n").map(|_| ())
//! }
//!
//! fn main() {
//! try_main().unwrap();
//! }
//!
//! ```
//!
//! ### 2. The guard restores an invariant on scope exit
//!
//! ```
//! extern crate scopeguard;
//!
//! use std::mem::ManuallyDrop;
//! use std::ptr;
//!
//! // This function, just for this example, takes the first element
//! // and inserts it into the assumed sorted tail of the vector.
//! //
//! // For optimization purposes we temporarily violate an invariant of the
//! // Vec, that it owns all of its elements.
//! //
//! // The safe approach is to use swap, which means two writes to memory,
//! // the optimization is to use a “hole” which uses only one write of memory
//! // for each position it moves.
//! //
//! // We *must* use a scope guard to run this code safely. We
//! // are running arbitrary user code (comparison operators) that may panic.
//! // The scope guard ensures we restore the invariant after successful
//! // exit or during unwinding from panic.
//! fn insertion_sort_first<T>(v: &mut Vec<T>)
//! where T: PartialOrd
//! {
//! struct Hole<'a, T: 'a> {
//! v: &'a mut Vec<T>,
//! index: usize,
//! value: ManuallyDrop<T>,
//! }
//!
//! unsafe {
//! // Create a moved-from location in the vector, a “hole”.
//! let value = ptr::read(&v[0]);
//! let mut hole = Hole { v: v, index: 0, value: ManuallyDrop::new(value) };
//!
//! // Use a scope guard with a value.
//! // At scope exit, plug the hole so that the vector is fully
//! // initialized again.
//! // The scope guard owns the hole, but we can access it through the guard.
//! let mut hole_guard = scopeguard::guard(hole, |hole| {
//! // plug the hole in the vector with the value that was // taken out
//! let index = hole.index;
//! ptr::copy_nonoverlapping(&*hole.value, &mut hole.v[index], 1);
//! });
//!
//! // run algorithm that moves the hole in the vector here
//! // move the hole until it's in a sorted position
//! for i in 1..hole_guard.v.len() {
//! if *hole_guard.value >= hole_guard.v[i] {
//! // move the element back and the hole forward
//! let index = hole_guard.index;
//! hole_guard.v.swap(index, index + 1);
//! hole_guard.index += 1;
//! } else {
//! break;
//! }
//! }
//!
//! // When the scope exits here, the Vec becomes whole again!
//! }
//! }
//!
//! fn main() {
//! let string = String::from;
//! let mut data = vec![string("c"), string("a"), string("b"), string("d")];
//! insertion_sort_first(&mut data);
//! assert_eq!(data, vec!["a", "b", "c", "d"]);
//! }
//!
//! ```
//!
//!
//! # Crate Features
//!
//! - `use_std`
//! + Enabled by default. Enables the `OnUnwind` and `OnSuccess` strategies.
//! + Disable to use `no_std`.
//!
//! # Rust Version
//!
//! This version of the crate requires Rust 1.20 or later.
//!
//! The scopeguard 1.x release series will use a carefully considered version
//! upgrade policy, where in a later 1.x version, we will raise the minimum
//! required Rust version.
#[cfg(not(any(test, feature = "use_std")))]
extern crate core as std;
use std::fmt;
use std::marker::PhantomData;
use std::mem::ManuallyDrop;
use std::ops::{Deref, DerefMut};
use std::ptr;
/// Controls in which cases the associated code should be run
pub trait Strategy {
/// Return `true` if the guard’s associated code should run
/// (in the context where this method is called).
fn should_run() -> bool;
}
/// Always run on scope exit.
///
/// “Always” run: on regular exit from a scope or on unwinding from a panic.
/// Can not run on abort, process exit, and other catastrophic events where
/// destructors don’t run.
#[derive(Debug)]
pub enum Always {}
/// Run on scope exit through unwinding.
///
/// Requires crate feature `use_std`.
#[cfg(feature = "use_std")]
#[derive(Debug)]
pub enum OnUnwind {}
/// Run on regular scope exit, when not unwinding.
///
/// Requires crate feature `use_std`.
#[cfg(feature = "use_std")]
#[derive(Debug)]
pub enum OnSuccess {}
impl Strategy for Always {
#[inline(always)]
fn should_run() -> bool {
true
}
}
#[cfg(feature = "use_std")]
impl Strategy for OnUnwind {
#[inline]
fn should_run() -> bool {
std::thread::panicking()
}
}
#[cfg(feature = "use_std")]
impl Strategy for OnSuccess {
#[inline]
fn should_run() -> bool {
!std::thread::panicking()
}
}
/// Macro to create a `ScopeGuard` (always run).
///
/// The macro takes statements, which are the body of a closure
/// that will run when the scope is exited.
#[macro_export]
macro_rules! defer {
($($t:tt)*) => {
let _guard = $crate::guard((), |()| { $($t)* });
};
}
/// Macro to create a `ScopeGuard` (run on successful scope exit).
///
/// The macro takes statements, which are the body of a closure
/// that will run when the scope is exited.
///
/// Requires crate feature `use_std`.
#[cfg(feature = "use_std")]
#[macro_export]
macro_rules! defer_on_success {
($($t:tt)*) => {
let _guard = $crate::guard_on_success((), |()| { $($t)* });
};
}
/// Macro to create a `ScopeGuard` (run on unwinding from panic).
///
/// The macro takes statements, which are the body of a closure
/// that will run when the scope is exited.
///
/// Requires crate feature `use_std`.
#[cfg(feature = "use_std")]
#[macro_export]
macro_rules! defer_on_unwind {
($($t:tt)*) => {
let _guard = $crate::guard_on_unwind((), |()| { $($t)* });
};
}
/// `ScopeGuard` is a scope guard that may own a protected value.
///
/// If you place a guard in a local variable, the closure can
/// run regardless how you leave the scope — through regular return or panic
/// (except if panic or other code aborts; so as long as destructors run).
/// It is run only once.
///
/// The `S` parameter for [`Strategy`](trait.Strategy.html) determines if
/// the closure actually runs.
///
/// The guard's closure will be called with the held value in the destructor.
///
/// The `ScopeGuard` implements `Deref` so that you can access the inner value.
pub struct ScopeGuard<T, F, S = Always>
where
F: FnOnce(T),
S: Strategy,
{
value: ManuallyDrop<T>,
dropfn: ManuallyDrop<F>,
// fn(S) -> S is used, so that the S is not taken into account for auto traits.
strategy: PhantomData<fn(S) -> S>,
}
impl<T, F, S> ScopeGuard<T, F, S>
where
F: FnOnce(T),
S: Strategy,
{
/// Create a `ScopeGuard` that owns `v` (accessible through deref) and calls
/// `dropfn` when its destructor runs.
///
/// The `Strategy` decides whether the scope guard's closure should run.
#[inline]
#[must_use]
pub fn with_strategy(v: T, dropfn: F) -> ScopeGuard<T, F, S> {
ScopeGuard {
value: ManuallyDrop::new(v),
dropfn: ManuallyDrop::new(dropfn),
strategy: PhantomData,
}
}
/// “Defuse” the guard and extract the value without calling the closure.
///
/// ```
/// extern crate scopeguard;
///
/// use scopeguard::{guard, ScopeGuard};
///
/// fn conditional() -> bool { true }
///
/// fn main() {
/// let mut guard = guard(Vec::new(), |mut v| v.clear());
/// guard.push(1);
///
/// if conditional() {
/// // a condition maybe makes us decide to
/// // “defuse” the guard and get back its inner parts
/// let value = ScopeGuard::into_inner(guard);
/// } else {
/// // guard still exists in this branch
/// }
/// }
/// ```
#[inline]
pub fn into_inner(guard: Self) -> T {
// Cannot move out of `Drop`-implementing types,
// so `ptr::read` the value and forget the guard.
let mut guard = ManuallyDrop::new(guard);
unsafe {
let value = ptr::read(&*guard.value);
// Drop the closure after `value` has been read, so that if the
// closure's `drop` function panics, unwinding still tries to drop
// `value`.
ManuallyDrop::drop(&mut guard.dropfn);
value
}
}
}
/// Create a new `ScopeGuard` owning `v` and with deferred closure `dropfn`.
#[inline]
#[must_use]
pub fn guard<T, F>(v: T, dropfn: F) -> ScopeGuard<T, F, Always>
where
F: FnOnce(T),
{
ScopeGuard::with_strategy(v, dropfn)
}
/// Create a new `ScopeGuard` owning `v` and with deferred closure `dropfn`.
///
/// Requires crate feature `use_std`.
#[cfg(feature = "use_std")]
#[inline]
#[must_use]
pub fn guard_on_success<T, F>(v: T, dropfn: F) -> ScopeGuard<T, F, OnSuccess>
where
F: FnOnce(T),
{
ScopeGuard::with_strategy(v, dropfn)
}
/// Create a new `ScopeGuard` owning `v` and with deferred closure `dropfn`.
///
/// Requires crate feature `use_std`.
///
/// ## Examples
///
/// For performance reasons, or to emulate “only run guard on unwind” in
/// no-std environments, we can also use the default guard and simply manually
/// defuse it at the end of scope like the following example. (The performance
/// reason would be if the [`OnUnwind`]'s call to [std::thread::panicking()] is
/// an issue.)
///
/// ```
/// extern crate scopeguard;
///
/// use scopeguard::ScopeGuard;
/// # fn main() {
/// {
/// let guard = scopeguard::guard((), |_| {});
///
/// // rest of the code here
///
/// // we reached the end of scope without unwinding - defuse it
/// ScopeGuard::into_inner(guard);
/// }
/// # }
/// ```
#[cfg(feature = "use_std")]
#[inline]
#[must_use]
pub fn guard_on_unwind<T, F>(v: T, dropfn: F) -> ScopeGuard<T, F, OnUnwind>
where
F: FnOnce(T),
{
ScopeGuard::with_strategy(v, dropfn)
}
// ScopeGuard can be Sync even if F isn't because the closure is
// not accessible from references.
// The guard does not store any instance of S, so it is also irrelevant.
unsafe impl<T, F, S> Sync for ScopeGuard<T, F, S>
where
T: Sync,
F: FnOnce(T),
S: Strategy,
{
}
impl<T, F, S> Deref for ScopeGuard<T, F, S>
where
F: FnOnce(T),
S: Strategy,
{
type Target = T;
fn deref(&self) -> &T {
&*self.value
}
}
impl<T, F, S> DerefMut for ScopeGuard<T, F, S>
where
F: FnOnce(T),
S: Strategy,
{
fn deref_mut(&mut self) -> &mut T {
&mut *self.value
}
}
impl<T, F, S> Drop for ScopeGuard<T, F, S>
where
F: FnOnce(T),
S: Strategy,
{
fn drop(&mut self) {
// This is OK because the fields are `ManuallyDrop`s
// which will not be dropped by the compiler.
let (value, dropfn) = unsafe { (ptr::read(&*self.value), ptr::read(&*self.dropfn)) };
if S::should_run() {
dropfn(value);
}
}
}
impl<T, F, S> fmt::Debug for ScopeGuard<T, F, S>
where
T: fmt::Debug,
F: FnOnce(T),
S: Strategy,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct(stringify!(ScopeGuard))
.field("value", &*self.value)
.finish()
}
}
#[cfg(test)]
mod tests {
use super::*;
use std::cell::Cell;
use std::panic::catch_unwind;
use std::panic::AssertUnwindSafe;
#[test]
fn test_defer() {
let drops = Cell::new(0);
defer!(drops.set(1000));
assert_eq!(drops.get(), 0);
}
#[cfg(feature = "use_std")]
#[test]
fn test_defer_success_1() {
let drops = Cell::new(0);
{
defer_on_success!(drops.set(1));
assert_eq!(drops.get(), 0);
}
assert_eq!(drops.get(), 1);
}
#[cfg(feature = "use_std")]
#[test]
fn test_defer_success_2() {
let drops = Cell::new(0);
let _ = catch_unwind(AssertUnwindSafe(|| {
defer_on_success!(drops.set(1));
panic!("failure")
}));
assert_eq!(drops.get(), 0);
}
#[cfg(feature = "use_std")]
#[test]
fn test_defer_unwind_1() {
let drops = Cell::new(0);
let _ = catch_unwind(AssertUnwindSafe(|| {
defer_on_unwind!(drops.set(1));
assert_eq!(drops.get(), 0);
panic!("failure")
}));
assert_eq!(drops.get(), 1);
}
#[cfg(feature = "use_std")]
#[test]
fn test_defer_unwind_2() {
let drops = Cell::new(0);
{
defer_on_unwind!(drops.set(1));
}
assert_eq!(drops.get(), 0);
}
#[test]
fn test_only_dropped_by_closure_when_run() {
let value_drops = Cell::new(0);
let value = guard((), |()| value_drops.set(1 + value_drops.get()));
let closure_drops = Cell::new(0);
let guard = guard(value, |_| closure_drops.set(1 + closure_drops.get()));
assert_eq!(value_drops.get(), 0);
assert_eq!(closure_drops.get(), 0);
drop(guard);
assert_eq!(value_drops.get(), 1);
assert_eq!(closure_drops.get(), 1);
}
#[cfg(feature = "use_std")]
#[test]
fn test_dropped_once_when_not_run() {
let value_drops = Cell::new(0);
let value = guard((), |()| value_drops.set(1 + value_drops.get()));
let captured_drops = Cell::new(0);
let captured = guard((), |()| captured_drops.set(1 + captured_drops.get()));
let closure_drops = Cell::new(0);
let guard = guard_on_unwind(value, |value| {
drop(value);
drop(captured);
closure_drops.set(1 + closure_drops.get())
});
assert_eq!(value_drops.get(), 0);
assert_eq!(captured_drops.get(), 0);
assert_eq!(closure_drops.get(), 0);
drop(guard);
assert_eq!(value_drops.get(), 1);
assert_eq!(captured_drops.get(), 1);
assert_eq!(closure_drops.get(), 0);
}
#[test]
fn test_into_inner() {
let dropped = Cell::new(false);
let value = guard(42, |_| dropped.set(true));
let guard = guard(value, |_| dropped.set(true));
let inner = ScopeGuard::into_inner(guard);
assert_eq!(dropped.get(), false);
assert_eq!(*inner, 42);
}
}