plotters/element/
pie.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
use crate::{
    element::{Drawable, PointCollection},
    style::{IntoFont, RGBColor, TextStyle, BLACK},
};
use plotters_backend::{BackendCoord, DrawingBackend, DrawingErrorKind};
use std::{error::Error, f64::consts::PI, fmt::Display};

#[derive(Debug)]
enum PieError {
    LengthMismatch,
}
impl Display for PieError {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            &PieError::LengthMismatch => write!(f, "Length Mismatch"),
        }
    }
}

impl Error for PieError {}

/// A Pie Graph
pub struct Pie<'a, Coord, Label: Display> {
    center: &'a Coord, // cartesian coord
    radius: &'a f64,
    sizes: &'a [f64],
    colors: &'a [RGBColor],
    labels: &'a [Label],
    total: f64,
    start_radian: f64,
    label_style: TextStyle<'a>,
    label_offset: f64,
    percentage_style: Option<TextStyle<'a>>,
    donut_hole: f64, // radius of the hole in case of a donut chart
}

impl<'a, Label: Display> Pie<'a, (i32, i32), Label> {
    /// Build a Pie object.
    /// Assumes a start angle at 0.0, which is aligned to the horizontal axis.
    pub fn new(
        center: &'a (i32, i32),
        radius: &'a f64,
        sizes: &'a [f64],
        colors: &'a [RGBColor],
        labels: &'a [Label],
    ) -> Self {
        // fold iterator to pre-calculate total from given slice sizes
        let total = sizes.iter().sum();

        // default label style and offset as 5% of the radius
        let radius_5pct = radius * 0.05;

        // strong assumption that the background is white for legibility.
        let label_style = TextStyle::from(("sans-serif", radius_5pct).into_font()).color(&BLACK);
        Self {
            center,
            radius,
            sizes,
            colors,
            labels,
            total,
            start_radian: 0.0,
            label_style,
            label_offset: radius_5pct,
            percentage_style: None,
            donut_hole: 0.0,
        }
    }

    /// Pass an angle in degrees to change the default.
    /// Default is set to start at 0, which is aligned on the x axis.
    /// ```
    /// use plotters::prelude::*;
    /// let mut pie = Pie::new(&(50,50), &10.0, &[50.0, 25.25, 20.0, 5.5], &[RED, BLUE, GREEN, WHITE], &["Red", "Blue", "Green", "White"]);
    /// pie.start_angle(-90.0);  // retract to a right angle, so it starts aligned to a vertical Y axis.
    /// ```
    pub fn start_angle(&mut self, start_angle: f64) {
        // angle is more intuitive in degrees as an API, but we use it as radian offset internally.
        self.start_radian = start_angle.to_radians();
    }

    /// Set the label style.
    pub fn label_style<T: Into<TextStyle<'a>>>(&mut self, label_style: T) {
        self.label_style = label_style.into();
    }

    /// Sets the offset to labels, to distanciate them further/closer from the center.
    pub fn label_offset(&mut self, offset_to_radius: f64) {
        self.label_offset = offset_to_radius
    }

    /// enables drawing the wedge's percentage in the middle of the wedge, with the given style
    pub fn percentages<T: Into<TextStyle<'a>>>(&mut self, label_style: T) {
        self.percentage_style = Some(label_style.into());
    }

    /// Enables creating a donut chart with a hole of the specified radius.
    ///
    /// The passed value must be greater than zero and lower than the chart overall radius, otherwise it'll be ignored.
    pub fn donut_hole(&mut self, hole_radius: f64) {
        if hole_radius > 0.0 && hole_radius < *self.radius {
            self.donut_hole = hole_radius;
        }
    }
}

impl<'a, DB: DrawingBackend, Label: Display> Drawable<DB> for Pie<'a, (i32, i32), Label> {
    fn draw<I: Iterator<Item = BackendCoord>>(
        &self,
        _pos: I,
        backend: &mut DB,
        _parent_dim: (u32, u32),
    ) -> Result<(), DrawingErrorKind<DB::ErrorType>> {
        let mut offset_theta = self.start_radian;

        // const reused for every radian calculation
        // the bigger the radius, the more fine-grained it should calculate
        // to avoid being aliasing from being too noticeable.
        // this all could be avoided if backend could draw a curve/bezier line as part of a polygon.
        let radian_increment = PI / 180.0 / self.radius.sqrt() * 2.0;
        let mut perc_labels = Vec::new();
        for (index, slice) in self.sizes.iter().enumerate() {
            let slice_style = self
                .colors
                .get(index)
                .ok_or_else(|| DrawingErrorKind::FontError(Box::new(PieError::LengthMismatch)))?;
            let label = self
                .labels
                .get(index)
                .ok_or_else(|| DrawingErrorKind::FontError(Box::new(PieError::LengthMismatch)))?;
            // start building wedge line against the previous edge
            let mut points = if self.donut_hole == 0.0 {
                vec![*self.center]
            } else {
                vec![]
            };
            let ratio = slice / self.total;
            let theta_final = ratio * 2.0 * PI + offset_theta; // end radian for the wedge

            // calculate middle for labels before mutating offset
            let middle_theta = ratio * PI + offset_theta;

            let slice_start = offset_theta;

            // calculate every fraction of radian for the wedge, offsetting for every iteration, clockwise
            //
            // a custom Range such as `for theta in offset_theta..=theta_final` would be more elegant
            // but f64 doesn't implement the Range trait, and it would requires the Step trait (increment by 1.0 or 0.0001?)
            // which is unstable therefore cannot be implemented outside of std, even as a newtype for radians.
            while offset_theta <= theta_final {
                let coord = theta_to_ordinal_coord(*self.radius, offset_theta, self.center);
                points.push(coord);
                offset_theta += radian_increment;
            }
            // final point of the wedge may not fall exactly on a radian, so add it extra
            let final_coord = theta_to_ordinal_coord(*self.radius, theta_final, self.center);
            points.push(final_coord);

            if self.donut_hole > 0.0 {
                while offset_theta >= slice_start {
                    let coord = theta_to_ordinal_coord(self.donut_hole, offset_theta, self.center);
                    points.push(coord);
                    offset_theta -= radian_increment;
                }
                // final point of the wedge may not fall exactly on a radian, so add it extra
                let final_coord_inner =
                    theta_to_ordinal_coord(self.donut_hole, slice_start, self.center);
                points.push(final_coord_inner);
            }

            // next wedge calculation will start from previous wedges's last radian
            offset_theta = theta_final;

            // draw wedge
            // TODO: Currently the backend doesn't have API to draw an arc. We need add that in the
            // future
            backend.fill_polygon(points, slice_style)?;

            // label coords from the middle
            let mut mid_coord =
                theta_to_ordinal_coord(self.radius + self.label_offset, middle_theta, self.center);

            // ensure label's doesn't fall in the circle
            let label_size = backend.estimate_text_size(&label.to_string(), &self.label_style)?;
            // if on the left hand side of the pie, offset whole label to the left
            if mid_coord.0 <= self.center.0 {
                mid_coord.0 -= label_size.0 as i32;
            }
            // put label
            backend.draw_text(&label.to_string(), &self.label_style, mid_coord)?;
            if let Some(percentage_style) = &self.percentage_style {
                let perc_label = format!("{:.1}%", (ratio * 100.0));
                let label_size = backend.estimate_text_size(&perc_label, percentage_style)?;
                let text_x_mid = (label_size.0 as f64 / 2.0).round() as i32;
                let text_y_mid = (label_size.1 as f64 / 2.0).round() as i32;
                let perc_radius = (self.radius + self.donut_hole) / 2.0;
                let perc_coord = theta_to_ordinal_coord(
                    perc_radius,
                    middle_theta,
                    &(self.center.0 - text_x_mid, self.center.1 - text_y_mid),
                );
                // perc_coord.0 -= middle_label_size.0.round() as i32;
                perc_labels.push((perc_label, perc_coord));
            }
        }
        // while percentages are generated during the first main iterations,
        // they have to go on top of the already drawn wedges, so require a new iteration.
        for (label, coord) in perc_labels {
            let style = self.percentage_style.as_ref().unwrap();
            backend.draw_text(&label, style, coord)?;
        }
        Ok(())
    }
}

impl<'a, Label: Display> PointCollection<'a, (i32, i32)> for &'a Pie<'a, (i32, i32), Label> {
    type Point = &'a (i32, i32);
    type IntoIter = std::iter::Once<&'a (i32, i32)>;
    fn point_iter(self) -> std::iter::Once<&'a (i32, i32)> {
        std::iter::once(self.center)
    }
}

fn theta_to_ordinal_coord(radius: f64, theta: f64, ordinal_offset: &(i32, i32)) -> (i32, i32) {
    // polar coordinates are (r, theta)
    // convert to (x, y) coord, with center as offset

    let (sin, cos) = theta.sin_cos();
    (
        // casting f64 to discrete i32 pixels coordinates is inevitably going to lose precision
        // if plotters can support float coordinates, this place would surely benefit, especially for small sizes.
        // so far, the result isn't so bad though
        (radius * cos + ordinal_offset.0 as f64).round() as i32, // x
        (radius * sin + ordinal_offset.1 as f64).round() as i32, // y
    )
}
#[cfg(test)]
mod test {
    use super::*;
    // use crate::prelude::*;

    #[test]
    fn polar_coord_to_cartestian_coord() {
        let coord = theta_to_ordinal_coord(800.0, 1.5_f64.to_radians(), &(5, 5));
        // rounded tends to be more accurate. this gets truncated to (804, 25) without rounding.
        assert_eq!(coord, (805, 26)); //coord calculated from theta
    }
    #[test]
    fn pie_calculations() {
        let mut center = (5, 5);
        let mut radius = 800.0;

        let sizes = vec![50.0, 25.0];
        // length isn't validated in new()
        let colors = vec![];
        let labels: Vec<&str> = vec![];
        let pie = Pie::new(&center, &radius, &sizes, &colors, &labels);
        assert_eq!(pie.total, 75.0); // total calculated from sizes

        // not ownership greedy
        center.1 += 1;
        radius += 1.0;
        assert!(colors.get(0).is_none());
        assert!(labels.first().is_none());
        assert_eq!(radius, 801.0);
    }
}