dalek_ff_group/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
#![allow(deprecated)]
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![no_std] // Prevents writing new code, in what should be a simple wrapper, which requires std
#![doc = include_str!("../README.md")]
#![allow(clippy::redundant_closure_call)]

use core::{
  borrow::Borrow,
  ops::{Deref, Add, AddAssign, Sub, SubAssign, Neg, Mul, MulAssign},
  iter::{Iterator, Sum, Product},
  hash::{Hash, Hasher},
};

use zeroize::Zeroize;
use subtle::{ConstantTimeEq, ConditionallySelectable};

use rand_core::RngCore;
use digest::{consts::U64, Digest, HashMarker};

use subtle::{Choice, CtOption};

pub use curve25519_dalek as dalek;

use dalek::{
  constants::{self, BASEPOINT_ORDER},
  scalar::Scalar as DScalar,
  edwards::{EdwardsPoint as DEdwardsPoint, EdwardsBasepointTable, CompressedEdwardsY},
  ristretto::{RistrettoPoint as DRistrettoPoint, RistrettoBasepointTable, CompressedRistretto},
};
pub use constants::{ED25519_BASEPOINT_TABLE, RISTRETTO_BASEPOINT_TABLE};

use group::{
  ff::{Field, PrimeField, FieldBits, PrimeFieldBits},
  Group, GroupEncoding,
  prime::PrimeGroup,
};

mod field;
pub use field::FieldElement;

// Use black_box when possible
#[rustversion::since(1.66)]
use core::hint::black_box;
#[rustversion::before(1.66)]
fn black_box<T>(val: T) -> T {
  val
}

fn u8_from_bool(bit_ref: &mut bool) -> u8 {
  let bit_ref = black_box(bit_ref);

  let mut bit = black_box(*bit_ref);
  #[allow(clippy::cast_lossless)]
  let res = black_box(bit as u8);
  bit.zeroize();
  debug_assert!((res | 1) == 1);

  bit_ref.zeroize();
  res
}

// Convert a boolean to a Choice in a *presumably* constant time manner
fn choice(mut value: bool) -> Choice {
  Choice::from(u8_from_bool(&mut value))
}

macro_rules! deref_borrow {
  ($Source: ident, $Target: ident) => {
    impl Deref for $Source {
      type Target = $Target;

      fn deref(&self) -> &Self::Target {
        &self.0
      }
    }

    impl Borrow<$Target> for $Source {
      fn borrow(&self) -> &$Target {
        &self.0
      }
    }

    impl Borrow<$Target> for &$Source {
      fn borrow(&self) -> &$Target {
        &self.0
      }
    }
  };
}

macro_rules! constant_time {
  ($Value: ident, $Inner: ident) => {
    impl ConstantTimeEq for $Value {
      fn ct_eq(&self, other: &Self) -> Choice {
        self.0.ct_eq(&other.0)
      }
    }

    impl ConditionallySelectable for $Value {
      fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
        $Value($Inner::conditional_select(&a.0, &b.0, choice))
      }
    }
  };
}
pub(crate) use constant_time;

macro_rules! math_op {
  (
    $Value: ident,
    $Other: ident,
    $Op: ident,
    $op_fn: ident,
    $Assign: ident,
    $assign_fn: ident,
    $function: expr
  ) => {
    impl $Op<$Other> for $Value {
      type Output = $Value;
      fn $op_fn(self, other: $Other) -> Self::Output {
        Self($function(self.0, other.0))
      }
    }
    impl $Assign<$Other> for $Value {
      fn $assign_fn(&mut self, other: $Other) {
        self.0 = $function(self.0, other.0);
      }
    }
    impl<'a> $Op<&'a $Other> for $Value {
      type Output = $Value;
      fn $op_fn(self, other: &'a $Other) -> Self::Output {
        Self($function(self.0, other.0))
      }
    }
    impl<'a> $Assign<&'a $Other> for $Value {
      fn $assign_fn(&mut self, other: &'a $Other) {
        self.0 = $function(self.0, other.0);
      }
    }
  };
}
pub(crate) use math_op;

macro_rules! math {
  ($Value: ident, $Factor: ident, $add: expr, $sub: expr, $mul: expr) => {
    math_op!($Value, $Value, Add, add, AddAssign, add_assign, $add);
    math_op!($Value, $Value, Sub, sub, SubAssign, sub_assign, $sub);
    math_op!($Value, $Factor, Mul, mul, MulAssign, mul_assign, $mul);
  };
}
pub(crate) use math;

macro_rules! math_neg {
  ($Value: ident, $Factor: ident, $add: expr, $sub: expr, $mul: expr) => {
    math!($Value, $Factor, $add, $sub, $mul);

    impl Neg for $Value {
      type Output = Self;
      fn neg(self) -> Self::Output {
        Self(-self.0)
      }
    }
  };
}

/// Wrapper around the dalek Scalar type.
#[derive(Clone, Copy, PartialEq, Eq, Default, Debug, Zeroize)]
pub struct Scalar(pub DScalar);
deref_borrow!(Scalar, DScalar);
constant_time!(Scalar, DScalar);
math_neg!(Scalar, Scalar, DScalar::add, DScalar::sub, DScalar::mul);

macro_rules! from_wrapper {
  ($uint: ident) => {
    impl From<$uint> for Scalar {
      fn from(a: $uint) -> Scalar {
        Scalar(DScalar::from(a))
      }
    }
  };
}

from_wrapper!(u8);
from_wrapper!(u16);
from_wrapper!(u32);
from_wrapper!(u64);
from_wrapper!(u128);

impl Scalar {
  pub fn pow(&self, other: Scalar) -> Scalar {
    let mut table = [Scalar::ONE; 16];
    table[1] = *self;
    for i in 2 .. 16 {
      table[i] = table[i - 1] * self;
    }

    let mut res = Scalar::ONE;
    let mut bits = 0;
    for (i, mut bit) in other.to_le_bits().iter_mut().rev().enumerate() {
      bits <<= 1;
      let mut bit = u8_from_bool(&mut bit);
      bits |= bit;
      bit.zeroize();

      if ((i + 1) % 4) == 0 {
        if i != 3 {
          for _ in 0 .. 4 {
            res *= res;
          }
        }

        let mut scale_by = Scalar::ONE;
        #[allow(clippy::needless_range_loop)]
        for i in 0 .. 16 {
          #[allow(clippy::cast_possible_truncation)] // Safe since 0 .. 16
          {
            scale_by = <_>::conditional_select(&scale_by, &table[i], bits.ct_eq(&(i as u8)));
          }
        }
        res *= scale_by;
        bits = 0;
      }
    }
    res
  }

  /// Perform wide reduction on a 64-byte array to create a Scalar without bias.
  pub fn from_bytes_mod_order_wide(bytes: &[u8; 64]) -> Scalar {
    Self(DScalar::from_bytes_mod_order_wide(bytes))
  }

  /// Derive a Scalar without bias from a digest via wide reduction.
  pub fn from_hash<D: Digest<OutputSize = U64> + HashMarker>(hash: D) -> Scalar {
    let mut output = [0u8; 64];
    output.copy_from_slice(&hash.finalize());
    let res = Scalar(DScalar::from_bytes_mod_order_wide(&output));
    output.zeroize();
    res
  }
}

impl Field for Scalar {
  const ZERO: Scalar = Scalar(DScalar::ZERO);
  const ONE: Scalar = Scalar(DScalar::ONE);

  fn random(rng: impl RngCore) -> Self {
    Self(<DScalar as Field>::random(rng))
  }

  fn square(&self) -> Self {
    Self(self.0.square())
  }
  fn double(&self) -> Self {
    Self(self.0.double())
  }
  fn invert(&self) -> CtOption<Self> {
    <DScalar as Field>::invert(&self.0).map(Self)
  }

  fn sqrt(&self) -> CtOption<Self> {
    self.0.sqrt().map(Self)
  }

  fn sqrt_ratio(num: &Self, div: &Self) -> (Choice, Self) {
    let (choice, res) = DScalar::sqrt_ratio(num, div);
    (choice, Self(res))
  }
}

impl PrimeField for Scalar {
  type Repr = [u8; 32];

  const MODULUS: &'static str = <DScalar as PrimeField>::MODULUS;

  const NUM_BITS: u32 = <DScalar as PrimeField>::NUM_BITS;
  const CAPACITY: u32 = <DScalar as PrimeField>::CAPACITY;

  const TWO_INV: Scalar = Scalar(<DScalar as PrimeField>::TWO_INV);

  const MULTIPLICATIVE_GENERATOR: Scalar =
    Scalar(<DScalar as PrimeField>::MULTIPLICATIVE_GENERATOR);
  const S: u32 = <DScalar as PrimeField>::S;

  const ROOT_OF_UNITY: Scalar = Scalar(<DScalar as PrimeField>::ROOT_OF_UNITY);
  const ROOT_OF_UNITY_INV: Scalar = Scalar(<DScalar as PrimeField>::ROOT_OF_UNITY_INV);

  const DELTA: Scalar = Scalar(<DScalar as PrimeField>::DELTA);

  fn from_repr(bytes: [u8; 32]) -> CtOption<Self> {
    <DScalar as PrimeField>::from_repr(bytes).map(Scalar)
  }
  fn to_repr(&self) -> [u8; 32] {
    self.0.to_repr()
  }

  fn is_odd(&self) -> Choice {
    self.0.is_odd()
  }

  fn from_u128(num: u128) -> Self {
    Scalar(DScalar::from_u128(num))
  }
}

impl PrimeFieldBits for Scalar {
  type ReprBits = [u8; 32];

  fn to_le_bits(&self) -> FieldBits<Self::ReprBits> {
    self.to_repr().into()
  }

  fn char_le_bits() -> FieldBits<Self::ReprBits> {
    BASEPOINT_ORDER.to_bytes().into()
  }
}

impl Sum<Scalar> for Scalar {
  fn sum<I: Iterator<Item = Scalar>>(iter: I) -> Scalar {
    Self(DScalar::sum(iter))
  }
}

impl<'a> Sum<&'a Scalar> for Scalar {
  fn sum<I: Iterator<Item = &'a Scalar>>(iter: I) -> Scalar {
    Self(DScalar::sum(iter))
  }
}

impl Product<Scalar> for Scalar {
  fn product<I: Iterator<Item = Scalar>>(iter: I) -> Scalar {
    Self(DScalar::product(iter))
  }
}

impl<'a> Product<&'a Scalar> for Scalar {
  fn product<I: Iterator<Item = &'a Scalar>>(iter: I) -> Scalar {
    Self(DScalar::product(iter))
  }
}

macro_rules! dalek_group {
  (
    $Point: ident,
    $DPoint: ident,
    $torsion_free: expr,

    $Table: ident,

    $DCompressed: ident,

    $BASEPOINT_POINT: ident,
    $BASEPOINT_TABLE: ident
  ) => {
    /// Wrapper around the dalek Point type. For Ed25519, this is restricted to the prime subgroup.
    #[derive(Clone, Copy, PartialEq, Eq, Debug, Zeroize)]
    pub struct $Point(pub $DPoint);
    deref_borrow!($Point, $DPoint);
    constant_time!($Point, $DPoint);
    math_neg!($Point, Scalar, $DPoint::add, $DPoint::sub, $DPoint::mul);

    /// The basepoint for this curve.
    pub const $BASEPOINT_POINT: $Point = $Point(constants::$BASEPOINT_POINT);

    impl Sum<$Point> for $Point {
      fn sum<I: Iterator<Item = $Point>>(iter: I) -> $Point {
        Self($DPoint::sum(iter))
      }
    }
    impl<'a> Sum<&'a $Point> for $Point {
      fn sum<I: Iterator<Item = &'a $Point>>(iter: I) -> $Point {
        Self($DPoint::sum(iter))
      }
    }

    impl Group for $Point {
      type Scalar = Scalar;
      fn random(mut rng: impl RngCore) -> Self {
        loop {
          let mut bytes = [0; 32];
          rng.fill_bytes(&mut bytes);
          let Some(point) = Option::<$Point>::from($Point::from_bytes(&bytes)) else {
            continue;
          };
          // Ban identity, per the trait specification
          if !bool::from(point.is_identity()) {
            return point;
          }
        }
      }
      fn identity() -> Self {
        Self($DPoint::identity())
      }
      fn generator() -> Self {
        $BASEPOINT_POINT
      }
      fn is_identity(&self) -> Choice {
        self.0.ct_eq(&$DPoint::identity())
      }
      fn double(&self) -> Self {
        Self(self.0.double())
      }
    }

    impl GroupEncoding for $Point {
      type Repr = [u8; 32];

      fn from_bytes(bytes: &Self::Repr) -> CtOption<Self> {
        let decompressed = $DCompressed(*bytes).decompress();
        // TODO: Same note on unwrap_or as above
        let point = decompressed.unwrap_or($DPoint::identity());
        CtOption::new(
          $Point(point),
          choice(black_box(decompressed).is_some()) & choice($torsion_free(point)),
        )
      }

      fn from_bytes_unchecked(bytes: &Self::Repr) -> CtOption<Self> {
        $Point::from_bytes(bytes)
      }

      fn to_bytes(&self) -> Self::Repr {
        self.0.to_bytes()
      }
    }

    impl PrimeGroup for $Point {}

    impl Mul<Scalar> for &$Table {
      type Output = $Point;
      fn mul(self, b: Scalar) -> $Point {
        $Point(&b.0 * self)
      }
    }

    // Support being used as a key in a table
    // While it is expensive as a key, due to the field operations required, there's frequently
    // use cases for public key -> value lookups
    #[allow(unknown_lints, renamed_and_removed_lints)]
    #[allow(clippy::derived_hash_with_manual_eq, clippy::derive_hash_xor_eq)]
    impl Hash for $Point {
      fn hash<H: Hasher>(&self, state: &mut H) {
        self.to_bytes().hash(state);
      }
    }
  };
}

dalek_group!(
  EdwardsPoint,
  DEdwardsPoint,
  |point: DEdwardsPoint| point.is_torsion_free(),
  EdwardsBasepointTable,
  CompressedEdwardsY,
  ED25519_BASEPOINT_POINT,
  ED25519_BASEPOINT_TABLE
);

impl EdwardsPoint {
  pub fn mul_by_cofactor(&self) -> EdwardsPoint {
    EdwardsPoint(self.0.mul_by_cofactor())
  }
}

dalek_group!(
  RistrettoPoint,
  DRistrettoPoint,
  |_| true,
  RistrettoBasepointTable,
  CompressedRistretto,
  RISTRETTO_BASEPOINT_POINT,
  RISTRETTO_BASEPOINT_TABLE
);

#[test]
fn test_ed25519_group() {
  ff_group_tests::group::test_prime_group_bits::<_, EdwardsPoint>(&mut rand_core::OsRng);
}

#[test]
fn test_ristretto_group() {
  ff_group_tests::group::test_prime_group_bits::<_, RistrettoPoint>(&mut rand_core::OsRng);
}