ff/
helpers.rs

1//! Helper methods for implementing the `ff` traits.
2
3use subtle::{Choice, ConditionallySelectable, ConstantTimeEq, CtOption};
4
5use crate::PrimeField;
6
7/// Constant-time implementation of Tonelli–Shanks' square-root algorithm for
8/// `p mod 16 = 1`.
9///
10/// `tm1d2` should be set to `(t - 1) // 2`, where `t = (modulus - 1) >> F::S`.
11///
12/// ## Implementing [`Field::sqrt`]
13///
14/// This function can be used to implement [`Field::sqrt`] for fields that both implement
15/// [`PrimeField`] and satisfy `p mod 16 = 1`.
16///
17/// [`Field::sqrt`]: crate::Field::sqrt
18pub fn sqrt_tonelli_shanks<F: PrimeField, S: AsRef<[u64]>>(f: &F, tm1d2: S) -> CtOption<F> {
19    // This is a constant-time version of https://eprint.iacr.org/2012/685.pdf (page 12,
20    // algorithm 5). Steps 2-5 of the algorithm are omitted because they are only needed
21    // to detect non-square input; it is more efficient to do that by checking at the end
22    // whether the square of the result is the input.
23
24    // w = self^((t - 1) // 2)
25    let w = f.pow_vartime(tm1d2);
26
27    let mut v = F::S;
28    let mut x = w * f;
29    let mut b = x * w;
30
31    // Initialize z as the 2^S root of unity.
32    let mut z = F::ROOT_OF_UNITY;
33
34    for max_v in (1..=F::S).rev() {
35        let mut k = 1;
36        let mut b2k = b.square();
37        let mut j_less_than_v: Choice = 1.into();
38
39        // This loop has three phases based on the value of k for algorithm 5:
40        // - for j <= k, we square b2k in order to calculate b^{2^k}.
41        // - for k < j <= v, we square z in order to calculate ω.
42        // - for j > v, we do nothing.
43        for j in 2..max_v {
44            let b2k_is_one = b2k.ct_eq(&F::ONE);
45            let squared = F::conditional_select(&b2k, &z, b2k_is_one).square();
46            b2k = F::conditional_select(&squared, &b2k, b2k_is_one);
47            let new_z = F::conditional_select(&z, &squared, b2k_is_one);
48            j_less_than_v &= !j.ct_eq(&v);
49            k = u32::conditional_select(&j, &k, b2k_is_one);
50            z = F::conditional_select(&z, &new_z, j_less_than_v);
51        }
52
53        let result = x * z;
54        x = F::conditional_select(&result, &x, b.ct_eq(&F::ONE));
55        z = z.square();
56        b *= z;
57        v = k;
58    }
59
60    CtOption::new(
61        x,
62        (x * x).ct_eq(f), // Only return Some if it's the square root.
63    )
64}
65
66/// Computes:
67///
68/// - $(\textsf{true}, \sqrt{\textsf{num}/\textsf{div}})$, if $\textsf{num}$ and
69///   $\textsf{div}$ are nonzero and $\textsf{num}/\textsf{div}$ is a square in the
70///   field;
71/// - $(\textsf{true}, 0)$, if $\textsf{num}$ is zero;
72/// - $(\textsf{false}, 0)$, if $\textsf{num}$ is nonzero and $\textsf{div}$ is zero;
73/// - $(\textsf{false}, \sqrt{G_S \cdot \textsf{num}/\textsf{div}})$, if
74///   $\textsf{num}$ and $\textsf{div}$ are nonzero and $\textsf{num}/\textsf{div}$ is
75///   a nonsquare in the field;
76///
77/// where $G_S$ is a non-square.
78///
79/// For this method, $G_S$ is currently [`PrimeField::ROOT_OF_UNITY`], a generator of the
80/// order $2^S$ subgroup. Users of this crate should not rely on this generator being
81/// fixed; it may be changed in future crate versions to simplify the implementation of
82/// the SSWU hash-to-curve algorithm.
83///
84/// The choice of root from sqrt is unspecified.
85///
86/// ## Implementing [`Field::sqrt_ratio`]
87///
88/// This function can be used to implement [`Field::sqrt_ratio`] for fields that also
89/// implement [`PrimeField`]. If doing so, the default implementation of [`Field::sqrt`]
90/// *MUST* be overridden, or else both functions will recurse in a cycle until a stack
91/// overflow occurs.
92///
93/// [`Field::sqrt_ratio`]: crate::Field::sqrt_ratio
94/// [`Field::sqrt`]: crate::Field::sqrt
95pub fn sqrt_ratio_generic<F: PrimeField>(num: &F, div: &F) -> (Choice, F) {
96    // General implementation:
97    //
98    // a = num * inv0(div)
99    //   = {    0    if div is zero
100    //     { num/div otherwise
101    //
102    // b = G_S * a
103    //   = {      0      if div is zero
104    //     { G_S*num/div otherwise
105    //
106    // Since G_S is non-square, a and b are either both zero (and both square), or
107    // only one of them is square. We can therefore choose the square root to return
108    // based on whether a is square, but for the boolean output we need to handle the
109    // num != 0 && div == 0 case specifically.
110
111    let a = div.invert().unwrap_or(F::ZERO) * num;
112    let b = a * F::ROOT_OF_UNITY;
113    let sqrt_a = a.sqrt();
114    let sqrt_b = b.sqrt();
115
116    let num_is_zero = num.is_zero();
117    let div_is_zero = div.is_zero();
118    let is_square = sqrt_a.is_some();
119    let is_nonsquare = sqrt_b.is_some();
120    assert!(bool::from(
121        num_is_zero | div_is_zero | (is_square ^ is_nonsquare)
122    ));
123
124    (
125        is_square & (num_is_zero | !div_is_zero),
126        CtOption::conditional_select(&sqrt_b, &sqrt_a, is_square).unwrap(),
127    )
128}