overload/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
//! Provides a macro to simplify operator overloading.
//!
//! To use, include the following:
//! ```
//! extern crate overload;
//! use overload::overload;
//! use std::ops; // <- don't forget this or you'll get nasty errors
//! ```
//!
//! # Introduction
//!
//! Suppose we have the following `struct` definition:
//! ```
//! #[derive(PartialEq, Debug)]
//! struct Val {
//! v: i32
//! }
//! ```
//! We can overload the addition of `Val`s like so:
//! ```
//! # extern crate overload;
//! # use overload::overload;
//! # use std::ops;
//! # #[derive(PartialEq, Debug)]
//! # struct Val {
//! # v: i32
//! # }
//! overload!((a: Val) + (b: Val) -> Val { Val { v: a.v + b.v } });
//! ```
//! The macro call above generates the following code:
//! ```ignore
//! impl ops::Add<Val> for Val {
//! type Output = Val;
//! fn add(self, b: Val) -> Self::Output {
//! let a = self;
//! Val { v: a.v + b.v }
//! }
//! }
//! ```
//! We are now able to add `Val`s:
//! ```
//! # extern crate overload;
//! # use overload::overload;
//! # use std::ops;
//! # #[derive(PartialEq, Debug)]
//! # struct Val {
//! # v: i32
//! # }
//! # overload!((a: Val) + (b: Val) -> Val { Val { v: a.v + b.v } });
//! assert_eq!(Val{v:3} + Val{v:5}, Val{v:8});
//! ```
//!
//! # Owned and borrowed types
//!
//! If we also wanted to overload addition for the borrowed type `&Val` we could write:
//! ```
//! # extern crate overload;
//! # use overload::overload;
//! # use std::ops;
//! # #[derive(PartialEq, Debug)]
//! # struct Val {
//! # v: i32
//! # }
//! overload!((a: &Val) + (b: &Val) -> Val { Val { v: a.v + b.v } });
//! ```
//! We might also want to overload addition between the owned and borrowed types:
//! ```
//! # extern crate overload;
//! # use overload::overload;
//! # use std::ops;
//! # #[derive(PartialEq, Debug)]
//! # struct Val {
//! # v: i32
//! # }
//! overload!((a: Val) + (b: &Val) -> Val { Val { v: a.v + b.v } });
//! overload!((a: &Val) + (b: Val) -> Val { Val { v: a.v + b.v } });
//! ```
//! Let's see how we can write these combinations more concisely.
//!
//! We can include a `?` in front of a type to indicate that it should stand in for both the owned and borrowed type.
//!
//! To overload addition for all four combinations between `Val` and `&Val` we can therefore simply include a `?` in front of both types:
//! ```
//! # extern crate overload;
//! # use overload::overload;
//! # use std::ops;
//! # #[derive(PartialEq, Debug)]
//! # struct Val {
//! # v: i32
//! # }
//! overload!((a: ?Val) + (b: ?Val) -> Val { Val { v: a.v + b.v } });
//! ```
//! The macro call above generates the following code:
//! ```ignore
//! impl ops::Add<Val> for Val {
//! type Output = Val;
//! fn add(self, b: Val) -> Self::Output {
//! let a = self;
//! Val { v: a.v + b.v }
//! }
//! }
//!
//! impl ops::Add<&Val> for Val {
//! type Output = Val;
//! fn add(self, b: &Val) -> Self::Output {
//! let a = self;
//! Val { v: a.v + b.v }
//! }
//! }
//!
//! impl ops::Add<Val> for &Val {
//! type Output = Val;
//! fn add(self, b: Val) -> Self::Output {
//! let a = self;
//! Val { v: a.v + b.v }
//! }
//! }
//!
//! impl ops::Add<&Val> for &Val {
//! type Output = Val;
//! fn add(self, b: &Val) -> Self::Output {
//! let a = self;
//! Val { v: a.v + b.v }
//! }
//! }
//! ```
//! We are now able to add `Val`s and `&Val`s in any combination:
//! ```
//! # extern crate overload;
//! # use overload::overload;
//! # use std::ops;
//! # #[derive(PartialEq, Debug)]
//! # struct Val {
//! # v: i32
//! # }
//! # overload!((a: ?Val) + (b: ?Val) -> Val { Val { v: a.v + b.v } });
//! assert_eq!(Val{v:3} + Val{v:5}, Val{v:8});
//! assert_eq!(Val{v:3} + &Val{v:5}, Val{v:8});
//! assert_eq!(&Val{v:3} + Val{v:5}, Val{v:8});
//! assert_eq!(&Val{v:3} + &Val{v:5}, Val{v:8});
//! ```
//!
//! # Binary operators
//!
//! The general syntax to overload a binary operator between types `<a_type>` and `<b_type>` is:
//! ```ignore
//! overload!((<a_ident>: <a_type>) <op> (<b_ident>: <b_type>) -> <out_type> { /*body*/ });
//! ```
//! Inside the body you can use `<a_ident>` and `<b_ident>` freely to perform any computation.
//!
//! The last line of the body needs to be an expression (i.e. no `;` at the end of the line) of type `<out_type>`.
//!
//! | Operator | Example | Trait |
//! |----------|-----------------------------------------------------------------|--------|
//! | + | `overload!((a: A) + (b: B) -> C { /*...*/ );` | Add |
//! | - | `overload!((a: A) - (b: B) -> C { /*...*/ );` | Sub |
//! | * | `overload!((a: A) * (b: B) -> C { /*...*/ );` | Mul |
//! | / | `overload!((a: A) / (b: B) -> C { /*...*/ );` | Div |
//! | % | `overload!((a: A) % (b: B) -> C { /*...*/ );` | Rem |
//! | & | `overload!((a: A) & (b: B) -> C { /*...*/ );` | BitAnd |
//! | \| | <code>overload!((a: A) | (b: B) -> C { /\*...*\/ );</code> | BitOr |
//! | ^ | `overload!((a: A) ^ (b: B) -> C { /*...*/ );` | BitXor |
//! | << | `overload!((a: A) << (b: B) -> C { /*...*/ );` | Shl |
//! | >> | `overload!((a: A) >> (b: B) -> C { /*...*/ );` | Shr |
//!
//! # Assignment operators
//!
//! The general syntax to overload an assignment operator between types `<a_type>` and `<b_type>` is:
//! ```ignore
//! overload!((<a_ident>: &mut <a_type>) <op> (<b_ident>: <b_type>) { /*body*/ });
//! ```
//! Inside the body you can use `<a_ident>` and `<b_ident>` freely to perform any computation and mutate `<a_ident>` as desired.
//!
//! | Operator | Example | Trait |
//! |----------|------------------------------------------------------------------|--------------|
//! | += | `overload!((a: &mut A) += (b: B) { /*...*/ );` | AddAssign |
//! | -= | `overload!((a: &mut A) -= (b: B) { /*...*/ );` | SubAssign |
//! | *= | `overload!((a: &mut A) *= (b: B) { /*...*/ );` | MulAssign |
//! | /= | `overload!((a: &mut A) /= (b: B) { /*...*/ );` | DivAssign |
//! | %= | `overload!((a: &mut A) %= (b: B) { /*...*/ );` | RemAssign |
//! | &= | `overload!((a: &mut A) &= (b: B) { /*...*/ );` | BitAndAssign |
//! | \|= | <code>overload!((a: &mut A) |= (b: B) { /\*...*\/ );</code> | BitOrAssign |
//! | ^= | `overload!((a: &mut A) ^= (b: B) { /*...*/ );` | BitXorAssign |
//! | <<= | `overload!((a: &mut A) <<= (b: B) { /*...*/ );` | ShlAssign |
//! | >>= | `overload!((a: &mut A) >>= (b: B) { /*...*/ );` | ShrAssign |
//!
//! # Unary operators
//!
//! The general syntax to overload a unary operator for type `<a_type>` is:
//! ```ignore
//! overload!(<op> (<a_ident>: <a_type>) -> <out_type> { /*body*/ });
//! ```
//! Inside the body you can use `<a_ident>` freely to perform any computation.
//!
//! The last line of the body needs to be an expression (i.e. no `;` at the end of the line) of type `<out_type>`.
//!
//! | Operator | Example | Trait |
//! |----------|---------------------------------------------------------|-------|
//! | - | `overload!(- (a: A) -> B { /*...*/ );` | Neg |
//! | ! | `overload!(! (a: A) -> B { /*...*/ );` | Not |
//!
//! # Notes
//!
//! Remember that you can only overload operators between one or more types if at least one of the types is defined in the current crate.
#[macro_use]
mod unary;
#[macro_use]
mod assignment;
#[macro_use]
mod binary;
/// Overloads an operator. See the [module level documentation](index.html) for more information.
#[macro_export(local_inner_macros)]
macro_rules! overload {
// Unary (both owned and borrowed)
($op:tt ($i:ident : ? $t:ty) -> $out:ty $body:block) => (
_overload_unary!($op, $i, $t, $out, $body);
_overload_unary!($op, $i, &$t, $out, $body);
);
// Unary (either owned or borrowed)
($op:tt ($i:ident : $t:ty) -> $out:ty $body:block) => (
_overload_unary!($op, $i, $t, $out, $body);
);
// Assignment (both owned and borrowed)
(($li:ident : &mut $lt:ty) $op:tt ($ri:ident : ? $rt:ty) $body:block) => (
_overload_assignment!($op, $li, $lt, $ri, $rt, $body);
_overload_assignment!($op, $li, $lt, $ri, &$rt, $body);
);
// Assignment (either owned or borrowed)
(($li:ident : &mut $lt:ty) $op:tt ($ri:ident : $rt:ty) $body:block) => (
_overload_assignment!($op, $li, $lt, $ri, $rt, $body);
);
// Binary (both - both)
(($li:ident : ? $lt:ty) $op:tt ($ri:ident : ? $rt:ty) -> $out:ty $body:block) => (
_overload_binary!($op, $li, $lt, $ri, $rt, $out, $body);
_overload_binary!($op, $li, $lt, $ri, &$rt, $out, $body);
_overload_binary!($op, $li, &$lt, $ri, $rt, $out, $body);
_overload_binary!($op, $li, &$lt, $ri, &$rt, $out, $body);
);
// Binary (both - either)
(($li:ident : ? $lt:ty) $op:tt ($ri:ident : $rt:ty) -> $out:ty $body:block) => (
_overload_binary!($op, $li, $lt, $ri, $rt, $out, $body);
_overload_binary!($op, $li, &$lt, $ri, $rt, $out, $body);
);
// Binary (either - both)
(($li:ident : $lt:ty) $op:tt ($ri:ident : ? $rt:ty) -> $out:ty $body:block) => (
_overload_binary!($op, $li, $lt, $ri, $rt, $out, $body);
_overload_binary!($op, $li, $lt, $ri, &$rt, $out, $body);
);
// Binary (either - either)
(($li:ident : $lt:ty) $op:tt ($ri:ident : $rt:ty) -> $out:ty $body:block) => (
_overload_binary!($op, $li, $lt, $ri, $rt, $out, $body);
);
}