bytes/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
#![allow(unknown_lints, unexpected_cfgs)]
#![warn(missing_docs, missing_debug_implementations, rust_2018_idioms)]
#![doc(test(
no_crate_inject,
attr(deny(warnings, rust_2018_idioms), allow(dead_code, unused_variables))
))]
#![no_std]
#![cfg_attr(docsrs, feature(doc_cfg))]
//! Provides abstractions for working with bytes.
//!
//! The `bytes` crate provides an efficient byte buffer structure
//! ([`Bytes`]) and traits for working with buffer
//! implementations ([`Buf`], [`BufMut`]).
//!
//! # `Bytes`
//!
//! `Bytes` is an efficient container for storing and operating on contiguous
//! slices of memory. It is intended for use primarily in networking code, but
//! could have applications elsewhere as well.
//!
//! `Bytes` values facilitate zero-copy network programming by allowing multiple
//! `Bytes` objects to point to the same underlying memory. This is managed by
//! using a reference count to track when the memory is no longer needed and can
//! be freed.
//!
//! A `Bytes` handle can be created directly from an existing byte store (such as `&[u8]`
//! or `Vec<u8>`), but usually a `BytesMut` is used first and written to. For
//! example:
//!
//! ```rust
//! use bytes::{BytesMut, BufMut};
//!
//! let mut buf = BytesMut::with_capacity(1024);
//! buf.put(&b"hello world"[..]);
//! buf.put_u16(1234);
//!
//! let a = buf.split();
//! assert_eq!(a, b"hello world\x04\xD2"[..]);
//!
//! buf.put(&b"goodbye world"[..]);
//!
//! let b = buf.split();
//! assert_eq!(b, b"goodbye world"[..]);
//!
//! assert_eq!(buf.capacity(), 998);
//! ```
//!
//! In the above example, only a single buffer of 1024 is allocated. The handles
//! `a` and `b` will share the underlying buffer and maintain indices tracking
//! the view into the buffer represented by the handle.
//!
//! See the [struct docs](`Bytes`) for more details.
//!
//! # `Buf`, `BufMut`
//!
//! These two traits provide read and write access to buffers. The underlying
//! storage may or may not be in contiguous memory. For example, `Bytes` is a
//! buffer that guarantees contiguous memory, but a [rope] stores the bytes in
//! disjoint chunks. `Buf` and `BufMut` maintain cursors tracking the current
//! position in the underlying byte storage. When bytes are read or written, the
//! cursor is advanced.
//!
//! [rope]: https://en.wikipedia.org/wiki/Rope_(data_structure)
//!
//! ## Relation with `Read` and `Write`
//!
//! At first glance, it may seem that `Buf` and `BufMut` overlap in
//! functionality with [`std::io::Read`] and [`std::io::Write`]. However, they
//! serve different purposes. A buffer is the value that is provided as an
//! argument to `Read::read` and `Write::write`. `Read` and `Write` may then
//! perform a syscall, which has the potential of failing. Operations on `Buf`
//! and `BufMut` are infallible.
extern crate alloc;
#[cfg(feature = "std")]
extern crate std;
pub mod buf;
pub use crate::buf::{Buf, BufMut};
mod bytes;
mod bytes_mut;
mod fmt;
mod loom;
pub use crate::bytes::Bytes;
pub use crate::bytes_mut::BytesMut;
// Optional Serde support
#[cfg(feature = "serde")]
mod serde;
#[inline(never)]
#[cold]
fn abort() -> ! {
#[cfg(feature = "std")]
{
std::process::abort();
}
#[cfg(not(feature = "std"))]
{
struct Abort;
impl Drop for Abort {
fn drop(&mut self) {
panic!();
}
}
let _a = Abort;
panic!("abort");
}
}
#[inline(always)]
#[cfg(feature = "std")]
fn saturating_sub_usize_u64(a: usize, b: u64) -> usize {
use core::convert::TryFrom;
match usize::try_from(b) {
Ok(b) => a.saturating_sub(b),
Err(_) => 0,
}
}
#[inline(always)]
#[cfg(feature = "std")]
fn min_u64_usize(a: u64, b: usize) -> usize {
use core::convert::TryFrom;
match usize::try_from(a) {
Ok(a) => usize::min(a, b),
Err(_) => b,
}
}
/// Panic with a nice error message.
#[cold]
fn panic_advance(idx: usize, len: usize) -> ! {
panic!(
"advance out of bounds: the len is {} but advancing by {}",
len, idx
);
}
#[cold]
fn panic_does_not_fit(size: usize, nbytes: usize) -> ! {
panic!(
"size too large: the integer type can fit {} bytes, but nbytes is {}",
size, nbytes
);
}
/// Precondition: dst >= original
///
/// The following line is equivalent to:
///
/// ```rust,ignore
/// self.ptr.as_ptr().offset_from(ptr) as usize;
/// ```
///
/// But due to min rust is 1.39 and it is only stabilized
/// in 1.47, we cannot use it.
#[inline]
fn offset_from(dst: *const u8, original: *const u8) -> usize {
dst as usize - original as usize
}