ring/agreement.rs
1// Copyright 2015-2017 Brian Smith.
2//
3// Permission to use, copy, modify, and/or distribute this software for any
4// purpose with or without fee is hereby granted, provided that the above
5// copyright notice and this permission notice appear in all copies.
6//
7// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
14
15//! Key Agreement: ECDH, including X25519.
16//!
17//! # Example
18//!
19//! Note that this example uses X25519, but ECDH using NIST P-256/P-384 is done
20//! exactly the same way, just substituting
21//! `agreement::ECDH_P256`/`agreement::ECDH_P384` for `agreement::X25519`.
22//!
23//! ```
24//! use ring::{agreement, rand};
25//!
26//! let rng = rand::SystemRandom::new();
27//!
28//! let my_private_key = agreement::EphemeralPrivateKey::generate(&agreement::X25519, &rng)?;
29//!
30//! // Make `my_public_key` a byte slice containing my public key. In a real
31//! // application, this would be sent to the peer in an encoded protocol
32//! // message.
33//! let my_public_key = my_private_key.compute_public_key()?;
34//!
35//! let peer_public_key_bytes = {
36//! // In a real application, the peer public key would be parsed out of a
37//! // protocol message. Here we just generate one.
38//! let peer_private_key =
39//! agreement::EphemeralPrivateKey::generate(&agreement::X25519, &rng)?;
40//! peer_private_key.compute_public_key()?
41//! };
42//!
43//! let peer_public_key = agreement::UnparsedPublicKey::new(
44//! &agreement::X25519,
45//! peer_public_key_bytes);
46//!
47//! agreement::agree_ephemeral(
48//! my_private_key,
49//! &peer_public_key,
50//! |_key_material| {
51//! // In a real application, we'd apply a KDF to the key material and the
52//! // public keys (as recommended in RFC 7748) and then derive session
53//! // keys from the result. We omit all that here.
54//! },
55//! )?;
56//!
57//! # Ok::<(), ring::error::Unspecified>(())
58//! ```
59
60// The "NSA Guide" steps here are from from section 3.1, "Ephemeral Unified
61// Model."
62
63use crate::{cpu, debug, ec, error, rand};
64
65pub use crate::ec::{
66 curve25519::x25519::X25519,
67 suite_b::ecdh::{ECDH_P256, ECDH_P384},
68};
69
70/// A key agreement algorithm.
71pub struct Algorithm {
72 pub(crate) curve: &'static ec::Curve,
73 pub(crate) ecdh: fn(
74 out: &mut [u8],
75 private_key: &ec::Seed,
76 peer_public_key: untrusted::Input,
77 cpu: cpu::Features,
78 ) -> Result<(), error::Unspecified>,
79}
80
81derive_debug_via_field!(Algorithm, curve);
82
83impl Eq for Algorithm {}
84impl PartialEq for Algorithm {
85 fn eq(&self, other: &Self) -> bool {
86 self.curve.id == other.curve.id
87 }
88}
89
90/// An ephemeral private key for use (only) with `agree_ephemeral`. The
91/// signature of `agree_ephemeral` ensures that an `EphemeralPrivateKey` can be
92/// used for at most one key agreement.
93pub struct EphemeralPrivateKey {
94 private_key: ec::Seed,
95 algorithm: &'static Algorithm,
96}
97
98derive_debug_via_field!(
99 EphemeralPrivateKey,
100 stringify!(EphemeralPrivateKey),
101 algorithm
102);
103
104impl EphemeralPrivateKey {
105 /// Generate a new ephemeral private key for the given algorithm.
106 pub fn generate(
107 alg: &'static Algorithm,
108 rng: &dyn rand::SecureRandom,
109 ) -> Result<Self, error::Unspecified> {
110 let cpu_features = cpu::features();
111
112 // NSA Guide Step 1.
113 //
114 // This only handles the key generation part of step 1. The rest of
115 // step one is done by `compute_public_key()`.
116 let private_key = ec::Seed::generate(alg.curve, rng, cpu_features)?;
117 Ok(Self {
118 private_key,
119 algorithm: alg,
120 })
121 }
122
123 /// Computes the public key from the private key.
124 #[inline(always)]
125 pub fn compute_public_key(&self) -> Result<PublicKey, error::Unspecified> {
126 // NSA Guide Step 1.
127 //
128 // Obviously, this only handles the part of Step 1 between the private
129 // key generation and the sending of the public key to the peer. `out`
130 // is what should be sent to the peer.
131 self.private_key
132 .compute_public_key(cpu::features())
133 .map(|public_key| PublicKey {
134 algorithm: self.algorithm,
135 bytes: public_key,
136 })
137 }
138
139 /// The algorithm for the private key.
140 #[inline]
141 pub fn algorithm(&self) -> &'static Algorithm {
142 self.algorithm
143 }
144
145 /// Do not use.
146 #[deprecated]
147 #[cfg(test)]
148 pub fn bytes(&self) -> &[u8] {
149 self.bytes_for_test()
150 }
151
152 #[cfg(test)]
153 pub(super) fn bytes_for_test(&self) -> &[u8] {
154 self.private_key.bytes_less_safe()
155 }
156}
157
158/// A public key for key agreement.
159#[derive(Clone)]
160pub struct PublicKey {
161 algorithm: &'static Algorithm,
162 bytes: ec::PublicKey,
163}
164
165impl AsRef<[u8]> for PublicKey {
166 fn as_ref(&self) -> &[u8] {
167 self.bytes.as_ref()
168 }
169}
170
171impl core::fmt::Debug for PublicKey {
172 fn fmt(&self, f: &mut core::fmt::Formatter) -> Result<(), core::fmt::Error> {
173 f.debug_struct("PublicKey")
174 .field("algorithm", &self.algorithm)
175 .field("bytes", &debug::HexStr(self.as_ref()))
176 .finish()
177 }
178}
179
180impl PublicKey {
181 /// The algorithm for the public key.
182 #[inline]
183 pub fn algorithm(&self) -> &'static Algorithm {
184 self.algorithm
185 }
186}
187
188/// An unparsed, possibly malformed, public key for key agreement.
189#[derive(Clone, Copy)]
190pub struct UnparsedPublicKey<B> {
191 algorithm: &'static Algorithm,
192 bytes: B,
193}
194
195impl<B> AsRef<[u8]> for UnparsedPublicKey<B>
196where
197 B: AsRef<[u8]>,
198{
199 fn as_ref(&self) -> &[u8] {
200 self.bytes.as_ref()
201 }
202}
203
204impl<B: core::fmt::Debug> core::fmt::Debug for UnparsedPublicKey<B>
205where
206 B: AsRef<[u8]>,
207{
208 fn fmt(&self, f: &mut core::fmt::Formatter) -> Result<(), core::fmt::Error> {
209 f.debug_struct("UnparsedPublicKey")
210 .field("algorithm", &self.algorithm)
211 .field("bytes", &debug::HexStr(self.bytes.as_ref()))
212 .finish()
213 }
214}
215
216impl<B> UnparsedPublicKey<B> {
217 /// Constructs a new `UnparsedPublicKey`.
218 pub fn new(algorithm: &'static Algorithm, bytes: B) -> Self {
219 Self { algorithm, bytes }
220 }
221
222 /// The algorithm for the public key.
223 #[inline]
224 pub fn algorithm(&self) -> &'static Algorithm {
225 self.algorithm
226 }
227
228 /// TODO: doc
229 #[inline]
230 pub fn bytes(&self) -> &B {
231 &self.bytes
232 }
233}
234
235/// Performs a key agreement with an ephemeral private key and the given public
236/// key.
237///
238/// `my_private_key` is the ephemeral private key to use. Since it is moved, it
239/// will not be usable after calling `agree_ephemeral`, thus guaranteeing that
240/// the key is used for only one key agreement.
241///
242/// `peer_public_key` is the peer's public key. `agree_ephemeral` will return
243/// `Err(error_value)` if it does not match `my_private_key's` algorithm/curve.
244/// `agree_ephemeral` verifies that it is encoded in the standard form for the
245/// algorithm and that the key is *valid*; see the algorithm's documentation for
246/// details on how keys are to be encoded and what constitutes a valid key for
247/// that algorithm.
248///
249/// After the key agreement is done, `agree_ephemeral` calls `kdf` with the raw
250/// key material from the key agreement operation and then returns what `kdf`
251/// returns.
252#[inline]
253pub fn agree_ephemeral<B: AsRef<[u8]>, R>(
254 my_private_key: EphemeralPrivateKey,
255 peer_public_key: &UnparsedPublicKey<B>,
256 kdf: impl FnOnce(&[u8]) -> R,
257) -> Result<R, error::Unspecified> {
258 let peer_public_key = UnparsedPublicKey {
259 algorithm: peer_public_key.algorithm,
260 bytes: peer_public_key.bytes.as_ref(),
261 };
262 agree_ephemeral_(my_private_key, peer_public_key, kdf, cpu::features())
263}
264
265fn agree_ephemeral_<R>(
266 my_private_key: EphemeralPrivateKey,
267 peer_public_key: UnparsedPublicKey<&[u8]>,
268 kdf: impl FnOnce(&[u8]) -> R,
269 cpu: cpu::Features,
270) -> Result<R, error::Unspecified> {
271 // NSA Guide Prerequisite 1.
272 //
273 // The domain parameters are hard-coded. This check verifies that the
274 // peer's public key's domain parameters match the domain parameters of
275 // this private key.
276 if peer_public_key.algorithm != my_private_key.algorithm {
277 return Err(error::Unspecified);
278 }
279
280 let alg = &my_private_key.algorithm;
281
282 // NSA Guide Prerequisite 2, regarding which KDFs are allowed, is delegated
283 // to the caller.
284
285 // NSA Guide Prerequisite 3, "Prior to or during the key-agreement process,
286 // each party shall obtain the identifier associated with the other party
287 // during the key-agreement scheme," is delegated to the caller.
288
289 // NSA Guide Step 1 is handled by `EphemeralPrivateKey::generate()` and
290 // `EphemeralPrivateKey::compute_public_key()`.
291
292 let mut shared_key = [0u8; ec::ELEM_MAX_BYTES];
293 let shared_key = &mut shared_key[..alg.curve.elem_scalar_seed_len];
294
295 // NSA Guide Steps 2, 3, and 4.
296 //
297 // We have a pretty liberal interpretation of the NIST's spec's "Destroy"
298 // that doesn't meet the NSA requirement to "zeroize."
299 (alg.ecdh)(
300 shared_key,
301 &my_private_key.private_key,
302 untrusted::Input::from(peer_public_key.bytes),
303 cpu,
304 )?;
305
306 // NSA Guide Steps 5 and 6.
307 //
308 // Again, we have a pretty liberal interpretation of the NIST's spec's
309 // "Destroy" that doesn't meet the NSA requirement to "zeroize."
310 Ok(kdf(shared_key))
311}