criterion/
bencher.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
use std::iter::IntoIterator;
use std::time::Duration;
use std::time::Instant;

use crate::black_box;
use crate::measurement::{Measurement, WallTime};
use crate::BatchSize;

#[cfg(feature = "async")]
use std::future::Future;

#[cfg(feature = "async")]
use crate::async_executor::AsyncExecutor;

// ================================== MAINTENANCE NOTE =============================================
// Any changes made to either Bencher or AsyncBencher will have to be replicated to the other!
// ================================== MAINTENANCE NOTE =============================================

/// Timer struct used to iterate a benchmarked function and measure the runtime.
///
/// This struct provides different timing loops as methods. Each timing loop provides a different
/// way to time a routine and each has advantages and disadvantages.
///
/// * If you want to do the iteration and measurement yourself (eg. passing the iteration count
///   to a separate process), use `iter_custom`.
/// * If your routine requires no per-iteration setup and returns a value with an expensive `drop`
///   method, use `iter_with_large_drop`.
/// * If your routine requires some per-iteration setup that shouldn't be timed, use `iter_batched`
///   or `iter_batched_ref`. See [`BatchSize`](enum.BatchSize.html) for a discussion of batch sizes.
///   If the setup value implements `Drop` and you don't want to include the `drop` time in the
///   measurement, use `iter_batched_ref`, otherwise use `iter_batched`. These methods are also
///   suitable for benchmarking routines which return a value with an expensive `drop` method,
///   but are more complex than `iter_with_large_drop`.
/// * Otherwise, use `iter`.
pub struct Bencher<'a, M: Measurement = WallTime> {
    pub(crate) iterated: bool,         // Have we iterated this benchmark?
    pub(crate) iters: u64,             // Number of times to iterate this benchmark
    pub(crate) value: M::Value,        // The measured value
    pub(crate) measurement: &'a M,     // Reference to the measurement object
    pub(crate) elapsed_time: Duration, // How much time did it take to perform the iteration? Used for the warmup period.
}
impl<'a, M: Measurement> Bencher<'a, M> {
    /// Times a `routine` by executing it many times and timing the total elapsed time.
    ///
    /// Prefer this timing loop when `routine` returns a value that doesn't have a destructor.
    ///
    /// # Timing model
    ///
    /// Note that the `Bencher` also times the time required to destroy the output of `routine()`.
    /// Therefore prefer this timing loop when the runtime of `mem::drop(O)` is negligible compared
    /// to the runtime of the `routine`.
    ///
    /// ```text
    /// elapsed = Instant::now + iters * (routine + mem::drop(O) + Range::next)
    /// ```
    ///
    /// # Example
    ///
    /// ```rust
    /// #[macro_use] extern crate criterion;
    ///
    /// use criterion::*;
    ///
    /// // The function to benchmark
    /// fn foo() {
    ///     // ...
    /// }
    ///
    /// fn bench(c: &mut Criterion) {
    ///     c.bench_function("iter", move |b| {
    ///         b.iter(|| foo())
    ///     });
    /// }
    ///
    /// criterion_group!(benches, bench);
    /// criterion_main!(benches);
    /// ```
    ///
    #[inline(never)]
    pub fn iter<O, R>(&mut self, mut routine: R)
    where
        R: FnMut() -> O,
    {
        self.iterated = true;
        let time_start = Instant::now();
        let start = self.measurement.start();
        for _ in 0..self.iters {
            black_box(routine());
        }
        self.value = self.measurement.end(start);
        self.elapsed_time = time_start.elapsed();
    }

    /// Times a `routine` by executing it many times and relying on `routine` to measure its own execution time.
    ///
    /// Prefer this timing loop in cases where `routine` has to do its own measurements to
    /// get accurate timing information (for example in multi-threaded scenarios where you spawn
    /// and coordinate with multiple threads).
    ///
    /// # Timing model
    /// Custom, the timing model is whatever is returned as the Duration from `routine`.
    ///
    /// # Example
    /// ```rust
    /// #[macro_use] extern crate criterion;
    /// use criterion::*;
    /// use criterion::black_box;
    /// use std::time::Instant;
    ///
    /// fn foo() {
    ///     // ...
    /// }
    ///
    /// fn bench(c: &mut Criterion) {
    ///     c.bench_function("iter", move |b| {
    ///         b.iter_custom(|iters| {
    ///             let start = Instant::now();
    ///             for _i in 0..iters {
    ///                 black_box(foo());
    ///             }
    ///             start.elapsed()
    ///         })
    ///     });
    /// }
    ///
    /// criterion_group!(benches, bench);
    /// criterion_main!(benches);
    /// ```
    ///
    #[inline(never)]
    pub fn iter_custom<R>(&mut self, mut routine: R)
    where
        R: FnMut(u64) -> M::Value,
    {
        self.iterated = true;
        let time_start = Instant::now();
        self.value = routine(self.iters);
        self.elapsed_time = time_start.elapsed();
    }

    #[doc(hidden)]
    pub fn iter_with_setup<I, O, S, R>(&mut self, setup: S, routine: R)
    where
        S: FnMut() -> I,
        R: FnMut(I) -> O,
    {
        self.iter_batched(setup, routine, BatchSize::PerIteration);
    }

    /// Times a `routine` by collecting its output on each iteration. This avoids timing the
    /// destructor of the value returned by `routine`.
    ///
    /// WARNING: This requires `O(iters * mem::size_of::<O>())` of memory, and `iters` is not under the
    /// control of the caller. If this causes out-of-memory errors, use `iter_batched` instead.
    ///
    /// # Timing model
    ///
    /// ``` text
    /// elapsed = Instant::now + iters * (routine) + Iterator::collect::<Vec<_>>
    /// ```
    ///
    /// # Example
    ///
    /// ```rust
    /// #[macro_use] extern crate criterion;
    ///
    /// use criterion::*;
    ///
    /// fn create_vector() -> Vec<u64> {
    ///     # vec![]
    ///     // ...
    /// }
    ///
    /// fn bench(c: &mut Criterion) {
    ///     c.bench_function("with_drop", move |b| {
    ///         // This will avoid timing the Vec::drop.
    ///         b.iter_with_large_drop(|| create_vector())
    ///     });
    /// }
    ///
    /// criterion_group!(benches, bench);
    /// criterion_main!(benches);
    /// ```
    ///
    pub fn iter_with_large_drop<O, R>(&mut self, mut routine: R)
    where
        R: FnMut() -> O,
    {
        self.iter_batched(|| (), |_| routine(), BatchSize::SmallInput);
    }

    /// Times a `routine` that requires some input by generating a batch of input, then timing the
    /// iteration of the benchmark over the input. See [`BatchSize`](enum.BatchSize.html) for
    /// details on choosing the batch size. Use this when the routine must consume its input.
    ///
    /// For example, use this loop to benchmark sorting algorithms, because they require unsorted
    /// data on each iteration.
    ///
    /// # Timing model
    ///
    /// ```text
    /// elapsed = (Instant::now * num_batches) + (iters * (routine + O::drop)) + Vec::extend
    /// ```
    ///
    /// # Example
    ///
    /// ```rust
    /// #[macro_use] extern crate criterion;
    ///
    /// use criterion::*;
    ///
    /// fn create_scrambled_data() -> Vec<u64> {
    ///     # vec![]
    ///     // ...
    /// }
    ///
    /// // The sorting algorithm to test
    /// fn sort(data: &mut [u64]) {
    ///     // ...
    /// }
    ///
    /// fn bench(c: &mut Criterion) {
    ///     let data = create_scrambled_data();
    ///
    ///     c.bench_function("with_setup", move |b| {
    ///         // This will avoid timing the to_vec call.
    ///         b.iter_batched(|| data.clone(), |mut data| sort(&mut data), BatchSize::SmallInput)
    ///     });
    /// }
    ///
    /// criterion_group!(benches, bench);
    /// criterion_main!(benches);
    /// ```
    ///
    #[inline(never)]
    pub fn iter_batched<I, O, S, R>(&mut self, mut setup: S, mut routine: R, size: BatchSize)
    where
        S: FnMut() -> I,
        R: FnMut(I) -> O,
    {
        self.iterated = true;
        let batch_size = size.iters_per_batch(self.iters);
        assert!(batch_size != 0, "Batch size must not be zero.");
        let time_start = Instant::now();
        self.value = self.measurement.zero();

        if batch_size == 1 {
            for _ in 0..self.iters {
                let input = black_box(setup());

                let start = self.measurement.start();
                let output = routine(input);
                let end = self.measurement.end(start);
                self.value = self.measurement.add(&self.value, &end);

                drop(black_box(output));
            }
        } else {
            let mut iteration_counter = 0;

            while iteration_counter < self.iters {
                let batch_size = ::std::cmp::min(batch_size, self.iters - iteration_counter);

                let inputs = black_box((0..batch_size).map(|_| setup()).collect::<Vec<_>>());
                let mut outputs = Vec::with_capacity(batch_size as usize);

                let start = self.measurement.start();
                outputs.extend(inputs.into_iter().map(&mut routine));
                let end = self.measurement.end(start);
                self.value = self.measurement.add(&self.value, &end);

                black_box(outputs);

                iteration_counter += batch_size;
            }
        }

        self.elapsed_time = time_start.elapsed();
    }

    /// Times a `routine` that requires some input by generating a batch of input, then timing the
    /// iteration of the benchmark over the input. See [`BatchSize`](enum.BatchSize.html) for
    /// details on choosing the batch size. Use this when the routine should accept the input by
    /// mutable reference.
    ///
    /// For example, use this loop to benchmark sorting algorithms, because they require unsorted
    /// data on each iteration.
    ///
    /// # Timing model
    ///
    /// ```text
    /// elapsed = (Instant::now * num_batches) + (iters * routine) + Vec::extend
    /// ```
    ///
    /// # Example
    ///
    /// ```rust
    /// #[macro_use] extern crate criterion;
    ///
    /// use criterion::*;
    ///
    /// fn create_scrambled_data() -> Vec<u64> {
    ///     # vec![]
    ///     // ...
    /// }
    ///
    /// // The sorting algorithm to test
    /// fn sort(data: &mut [u64]) {
    ///     // ...
    /// }
    ///
    /// fn bench(c: &mut Criterion) {
    ///     let data = create_scrambled_data();
    ///
    ///     c.bench_function("with_setup", move |b| {
    ///         // This will avoid timing the to_vec call.
    ///         b.iter_batched(|| data.clone(), |mut data| sort(&mut data), BatchSize::SmallInput)
    ///     });
    /// }
    ///
    /// criterion_group!(benches, bench);
    /// criterion_main!(benches);
    /// ```
    ///
    #[inline(never)]
    pub fn iter_batched_ref<I, O, S, R>(&mut self, mut setup: S, mut routine: R, size: BatchSize)
    where
        S: FnMut() -> I,
        R: FnMut(&mut I) -> O,
    {
        self.iterated = true;
        let batch_size = size.iters_per_batch(self.iters);
        assert!(batch_size != 0, "Batch size must not be zero.");
        let time_start = Instant::now();
        self.value = self.measurement.zero();

        if batch_size == 1 {
            for _ in 0..self.iters {
                let mut input = black_box(setup());

                let start = self.measurement.start();
                let output = routine(&mut input);
                let end = self.measurement.end(start);
                self.value = self.measurement.add(&self.value, &end);

                drop(black_box(output));
                drop(black_box(input));
            }
        } else {
            let mut iteration_counter = 0;

            while iteration_counter < self.iters {
                let batch_size = ::std::cmp::min(batch_size, self.iters - iteration_counter);

                let mut inputs = black_box((0..batch_size).map(|_| setup()).collect::<Vec<_>>());
                let mut outputs = Vec::with_capacity(batch_size as usize);

                let start = self.measurement.start();
                outputs.extend(inputs.iter_mut().map(&mut routine));
                let end = self.measurement.end(start);
                self.value = self.measurement.add(&self.value, &end);

                black_box(outputs);

                iteration_counter += batch_size;
            }
        }
        self.elapsed_time = time_start.elapsed();
    }

    // Benchmarks must actually call one of the iter methods. This causes benchmarks to fail loudly
    // if they don't.
    pub(crate) fn assert_iterated(&mut self) {
        assert!(
            self.iterated,
            "Benchmark function must call Bencher::iter or related method."
        );
        self.iterated = false;
    }

    /// Convert this bencher into an AsyncBencher, which enables async/await support.
    #[cfg(feature = "async")]
    pub fn to_async<'b, A: AsyncExecutor>(&'b mut self, runner: A) -> AsyncBencher<'a, 'b, A, M> {
        AsyncBencher { b: self, runner }
    }
}

/// Async/await variant of the Bencher struct.
#[cfg(feature = "async")]
pub struct AsyncBencher<'a, 'b, A: AsyncExecutor, M: Measurement = WallTime> {
    b: &'b mut Bencher<'a, M>,
    runner: A,
}
#[cfg(feature = "async")]
impl<'a, 'b, A: AsyncExecutor, M: Measurement> AsyncBencher<'a, 'b, A, M> {
    /// Times a `routine` by executing it many times and timing the total elapsed time.
    ///
    /// Prefer this timing loop when `routine` returns a value that doesn't have a destructor.
    ///
    /// # Timing model
    ///
    /// Note that the `AsyncBencher` also times the time required to destroy the output of `routine()`.
    /// Therefore prefer this timing loop when the runtime of `mem::drop(O)` is negligible compared
    /// to the runtime of the `routine`.
    ///
    /// ```text
    /// elapsed = Instant::now + iters * (routine + mem::drop(O) + Range::next)
    /// ```
    ///
    /// # Example
    ///
    /// ```rust
    /// #[macro_use] extern crate criterion;
    ///
    /// use criterion::*;
    /// use criterion::async_executor::FuturesExecutor;
    ///
    /// // The function to benchmark
    /// async fn foo() {
    ///     // ...
    /// }
    ///
    /// fn bench(c: &mut Criterion) {
    ///     c.bench_function("iter", move |b| {
    ///         b.to_async(FuturesExecutor).iter(|| async { foo().await } )
    ///     });
    /// }
    ///
    /// criterion_group!(benches, bench);
    /// criterion_main!(benches);
    /// ```
    ///
    #[inline(never)]
    pub fn iter<O, R, F>(&mut self, mut routine: R)
    where
        R: FnMut() -> F,
        F: Future<Output = O>,
    {
        let AsyncBencher { b, runner } = self;
        runner.block_on(async {
            b.iterated = true;
            let time_start = Instant::now();
            let start = b.measurement.start();
            for _ in 0..b.iters {
                black_box(routine().await);
            }
            b.value = b.measurement.end(start);
            b.elapsed_time = time_start.elapsed();
        });
    }

    /// Times a `routine` by executing it many times and relying on `routine` to measure its own execution time.
    ///
    /// Prefer this timing loop in cases where `routine` has to do its own measurements to
    /// get accurate timing information (for example in multi-threaded scenarios where you spawn
    /// and coordinate with multiple threads).
    ///
    /// # Timing model
    /// Custom, the timing model is whatever is returned as the Duration from `routine`.
    ///
    /// # Example
    /// ```rust
    /// #[macro_use] extern crate criterion;
    /// use criterion::*;
    /// use criterion::black_box;
    /// use criterion::async_executor::FuturesExecutor;
    /// use std::time::Instant;
    ///
    /// async fn foo() {
    ///     // ...
    /// }
    ///
    /// fn bench(c: &mut Criterion) {
    ///     c.bench_function("iter", move |b| {
    ///         b.to_async(FuturesExecutor).iter_custom(|iters| {
    ///             async move {
    ///                 let start = Instant::now();
    ///                 for _i in 0..iters {
    ///                     black_box(foo().await);
    ///                 }
    ///                 start.elapsed()
    ///             }
    ///         })
    ///     });
    /// }
    ///
    /// criterion_group!(benches, bench);
    /// criterion_main!(benches);
    /// ```
    ///
    #[inline(never)]
    pub fn iter_custom<R, F>(&mut self, mut routine: R)
    where
        R: FnMut(u64) -> F,
        F: Future<Output = M::Value>,
    {
        let AsyncBencher { b, runner } = self;
        runner.block_on(async {
            b.iterated = true;
            let time_start = Instant::now();
            b.value = routine(b.iters).await;
            b.elapsed_time = time_start.elapsed();
        })
    }

    #[doc(hidden)]
    pub fn iter_with_setup<I, O, S, R, F>(&mut self, setup: S, routine: R)
    where
        S: FnMut() -> I,
        R: FnMut(I) -> F,
        F: Future<Output = O>,
    {
        self.iter_batched(setup, routine, BatchSize::PerIteration);
    }

    /// Times a `routine` by collecting its output on each iteration. This avoids timing the
    /// destructor of the value returned by `routine`.
    ///
    /// WARNING: This requires `O(iters * mem::size_of::<O>())` of memory, and `iters` is not under the
    /// control of the caller. If this causes out-of-memory errors, use `iter_batched` instead.
    ///
    /// # Timing model
    ///
    /// ``` text
    /// elapsed = Instant::now + iters * (routine) + Iterator::collect::<Vec<_>>
    /// ```
    ///
    /// # Example
    ///
    /// ```rust
    /// #[macro_use] extern crate criterion;
    ///
    /// use criterion::*;
    /// use criterion::async_executor::FuturesExecutor;
    ///
    /// async fn create_vector() -> Vec<u64> {
    ///     # vec![]
    ///     // ...
    /// }
    ///
    /// fn bench(c: &mut Criterion) {
    ///     c.bench_function("with_drop", move |b| {
    ///         // This will avoid timing the Vec::drop.
    ///         b.to_async(FuturesExecutor).iter_with_large_drop(|| async { create_vector().await })
    ///     });
    /// }
    ///
    /// criterion_group!(benches, bench);
    /// criterion_main!(benches);
    /// ```
    ///
    pub fn iter_with_large_drop<O, R, F>(&mut self, mut routine: R)
    where
        R: FnMut() -> F,
        F: Future<Output = O>,
    {
        self.iter_batched(|| (), |_| routine(), BatchSize::SmallInput);
    }

    #[doc(hidden)]
    pub fn iter_with_large_setup<I, O, S, R, F>(&mut self, setup: S, routine: R)
    where
        S: FnMut() -> I,
        R: FnMut(I) -> F,
        F: Future<Output = O>,
    {
        self.iter_batched(setup, routine, BatchSize::NumBatches(1));
    }

    /// Times a `routine` that requires some input by generating a batch of input, then timing the
    /// iteration of the benchmark over the input. See [`BatchSize`](enum.BatchSize.html) for
    /// details on choosing the batch size. Use this when the routine must consume its input.
    ///
    /// For example, use this loop to benchmark sorting algorithms, because they require unsorted
    /// data on each iteration.
    ///
    /// # Timing model
    ///
    /// ```text
    /// elapsed = (Instant::now * num_batches) + (iters * (routine + O::drop)) + Vec::extend
    /// ```
    ///
    /// # Example
    ///
    /// ```rust
    /// #[macro_use] extern crate criterion;
    ///
    /// use criterion::*;
    /// use criterion::async_executor::FuturesExecutor;
    ///
    /// fn create_scrambled_data() -> Vec<u64> {
    ///     # vec![]
    ///     // ...
    /// }
    ///
    /// // The sorting algorithm to test
    /// async fn sort(data: &mut [u64]) {
    ///     // ...
    /// }
    ///
    /// fn bench(c: &mut Criterion) {
    ///     let data = create_scrambled_data();
    ///
    ///     c.bench_function("with_setup", move |b| {
    ///         // This will avoid timing the to_vec call.
    ///         b.iter_batched(|| data.clone(), |mut data| async move { sort(&mut data).await }, BatchSize::SmallInput)
    ///     });
    /// }
    ///
    /// criterion_group!(benches, bench);
    /// criterion_main!(benches);
    /// ```
    ///
    #[inline(never)]
    pub fn iter_batched<I, O, S, R, F>(&mut self, mut setup: S, mut routine: R, size: BatchSize)
    where
        S: FnMut() -> I,
        R: FnMut(I) -> F,
        F: Future<Output = O>,
    {
        let AsyncBencher { b, runner } = self;
        runner.block_on(async {
            b.iterated = true;
            let batch_size = size.iters_per_batch(b.iters);
            assert!(batch_size != 0, "Batch size must not be zero.");
            let time_start = Instant::now();
            b.value = b.measurement.zero();

            if batch_size == 1 {
                for _ in 0..b.iters {
                    let input = black_box(setup());

                    let start = b.measurement.start();
                    let output = routine(input).await;
                    let end = b.measurement.end(start);
                    b.value = b.measurement.add(&b.value, &end);

                    drop(black_box(output));
                }
            } else {
                let mut iteration_counter = 0;

                while iteration_counter < b.iters {
                    let batch_size = ::std::cmp::min(batch_size, b.iters - iteration_counter);

                    let inputs = black_box((0..batch_size).map(|_| setup()).collect::<Vec<_>>());
                    let mut outputs = Vec::with_capacity(batch_size as usize);

                    let start = b.measurement.start();
                    // Can't use .extend here like the sync version does
                    for input in inputs {
                        outputs.push(routine(input).await);
                    }
                    let end = b.measurement.end(start);
                    b.value = b.measurement.add(&b.value, &end);

                    black_box(outputs);

                    iteration_counter += batch_size;
                }
            }

            b.elapsed_time = time_start.elapsed();
        })
    }

    /// Times a `routine` that requires some input by generating a batch of input, then timing the
    /// iteration of the benchmark over the input. See [`BatchSize`](enum.BatchSize.html) for
    /// details on choosing the batch size. Use this when the routine should accept the input by
    /// mutable reference.
    ///
    /// For example, use this loop to benchmark sorting algorithms, because they require unsorted
    /// data on each iteration.
    ///
    /// # Timing model
    ///
    /// ```text
    /// elapsed = (Instant::now * num_batches) + (iters * routine) + Vec::extend
    /// ```
    ///
    /// # Example
    ///
    /// ```rust
    /// #[macro_use] extern crate criterion;
    ///
    /// use criterion::*;
    /// use criterion::async_executor::FuturesExecutor;
    ///
    /// fn create_scrambled_data() -> Vec<u64> {
    ///     # vec![]
    ///     // ...
    /// }
    ///
    /// // The sorting algorithm to test
    /// async fn sort(data: &mut [u64]) {
    ///     // ...
    /// }
    ///
    /// fn bench(c: &mut Criterion) {
    ///     let data = create_scrambled_data();
    ///
    ///     c.bench_function("with_setup", move |b| {
    ///         // This will avoid timing the to_vec call.
    ///         b.iter_batched(|| data.clone(), |mut data| async move { sort(&mut data).await }, BatchSize::SmallInput)
    ///     });
    /// }
    ///
    /// criterion_group!(benches, bench);
    /// criterion_main!(benches);
    /// ```
    ///
    #[inline(never)]
    pub fn iter_batched_ref<I, O, S, R, F>(&mut self, mut setup: S, mut routine: R, size: BatchSize)
    where
        S: FnMut() -> I,
        R: FnMut(&mut I) -> F,
        F: Future<Output = O>,
    {
        let AsyncBencher { b, runner } = self;
        runner.block_on(async {
            b.iterated = true;
            let batch_size = size.iters_per_batch(b.iters);
            assert!(batch_size != 0, "Batch size must not be zero.");
            let time_start = Instant::now();
            b.value = b.measurement.zero();

            if batch_size == 1 {
                for _ in 0..b.iters {
                    let mut input = black_box(setup());

                    let start = b.measurement.start();
                    let output = routine(&mut input).await;
                    let end = b.measurement.end(start);
                    b.value = b.measurement.add(&b.value, &end);

                    drop(black_box(output));
                    drop(black_box(input));
                }
            } else {
                let mut iteration_counter = 0;

                while iteration_counter < b.iters {
                    let batch_size = ::std::cmp::min(batch_size, b.iters - iteration_counter);

                    let inputs = black_box((0..batch_size).map(|_| setup()).collect::<Vec<_>>());
                    let mut outputs = Vec::with_capacity(batch_size as usize);

                    let start = b.measurement.start();
                    // Can't use .extend here like the sync version does
                    for mut input in inputs {
                        outputs.push(routine(&mut input).await);
                    }
                    let end = b.measurement.end(start);
                    b.value = b.measurement.add(&b.value, &end);

                    black_box(outputs);

                    iteration_counter += batch_size;
                }
            }
            b.elapsed_time = time_start.elapsed();
        });
    }
}