generic_array/sequence.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
//! Useful traits for manipulating sequences of data stored in `GenericArray`s
use super::*;
use core::ops::{Add, Sub};
use core::mem::MaybeUninit;
use core::ptr;
use typenum::operator_aliases::*;
/// Defines some sequence with an associated length and iteration capabilities.
///
/// This is useful for passing N-length generic arrays as generics.
pub unsafe trait GenericSequence<T>: Sized + IntoIterator {
/// `GenericArray` associated length
type Length: ArrayLength<T>;
/// Concrete sequence type used in conjuction with reference implementations of `GenericSequence`
type Sequence: GenericSequence<T, Length = Self::Length> + FromIterator<T>;
/// Initializes a new sequence instance using the given function.
///
/// If the generator function panics while initializing the sequence,
/// any already initialized elements will be dropped.
fn generate<F>(f: F) -> Self::Sequence
where
F: FnMut(usize) -> T;
#[doc(hidden)]
fn inverted_zip<B, U, F>(
self,
lhs: GenericArray<B, Self::Length>,
mut f: F,
) -> MappedSequence<GenericArray<B, Self::Length>, B, U>
where
GenericArray<B, Self::Length>: GenericSequence<B, Length = Self::Length>
+ MappedGenericSequence<B, U>,
Self: MappedGenericSequence<T, U>,
Self::Length: ArrayLength<B> + ArrayLength<U>,
F: FnMut(B, Self::Item) -> U,
{
unsafe {
let mut left = ArrayConsumer::new(lhs);
let (left_array_iter, left_position) = left.iter_position();
FromIterator::from_iter(left_array_iter.zip(self.into_iter()).map(
|(l, right_value)| {
let left_value = ptr::read(l);
*left_position += 1;
f(left_value, right_value)
},
))
}
}
#[doc(hidden)]
fn inverted_zip2<B, Lhs, U, F>(self, lhs: Lhs, mut f: F) -> MappedSequence<Lhs, B, U>
where
Lhs: GenericSequence<B, Length = Self::Length> + MappedGenericSequence<B, U>,
Self: MappedGenericSequence<T, U>,
Self::Length: ArrayLength<B> + ArrayLength<U>,
F: FnMut(Lhs::Item, Self::Item) -> U,
{
FromIterator::from_iter(lhs.into_iter().zip(self.into_iter()).map(|(l, r)| f(l, r)))
}
}
/// Accessor for `GenericSequence` item type, which is really `IntoIterator::Item`
///
/// For deeply nested generic mapped sequence types, like shown in `tests/generics.rs`,
/// this can be useful for keeping things organized.
pub type SequenceItem<T> = <T as IntoIterator>::Item;
unsafe impl<'a, T: 'a, S: GenericSequence<T>> GenericSequence<T> for &'a S
where
&'a S: IntoIterator,
{
type Length = S::Length;
type Sequence = S::Sequence;
#[inline]
fn generate<F>(f: F) -> Self::Sequence
where
F: FnMut(usize) -> T,
{
S::generate(f)
}
}
unsafe impl<'a, T: 'a, S: GenericSequence<T>> GenericSequence<T> for &'a mut S
where
&'a mut S: IntoIterator,
{
type Length = S::Length;
type Sequence = S::Sequence;
#[inline]
fn generate<F>(f: F) -> Self::Sequence
where
F: FnMut(usize) -> T,
{
S::generate(f)
}
}
/// Defines any `GenericSequence` which can be lengthened or extended by appending
/// or prepending an element to it.
///
/// Any lengthened sequence can be shortened back to the original using `pop_front` or `pop_back`
pub unsafe trait Lengthen<T>: Sized + GenericSequence<T> {
/// `GenericSequence` that has one more element than `Self`
type Longer: Shorten<T, Shorter = Self>;
/// Returns a new array with the given element appended to the end of it.
///
/// Example:
///
/// ```rust
/// # use generic_array::{arr, sequence::Lengthen};
/// # fn main() {
/// let a = arr![i32; 1, 2, 3];
///
/// let b = a.append(4);
///
/// assert_eq!(b, arr![i32; 1, 2, 3, 4]);
/// # }
/// ```
fn append(self, last: T) -> Self::Longer;
/// Returns a new array with the given element prepended to the front of it.
///
/// Example:
///
/// ```rust
/// # use generic_array::{arr, sequence::Lengthen};
/// # fn main() {
/// let a = arr![i32; 1, 2, 3];
///
/// let b = a.prepend(4);
///
/// assert_eq!(b, arr![i32; 4, 1, 2, 3]);
/// # }
/// ```
fn prepend(self, first: T) -> Self::Longer;
}
/// Defines a `GenericSequence` which can be shortened by removing the first or last element from it.
///
/// Additionally, any shortened sequence can be lengthened by
/// appending or prepending an element to it.
pub unsafe trait Shorten<T>: Sized + GenericSequence<T> {
/// `GenericSequence` that has one less element than `Self`
type Shorter: Lengthen<T, Longer = Self>;
/// Returns a new array without the last element, and the last element.
///
/// Example:
///
/// ```rust
/// # use generic_array::{arr, sequence::Shorten};
/// # fn main() {
/// let a = arr![i32; 1, 2, 3, 4];
///
/// let (init, last) = a.pop_back();
///
/// assert_eq!(init, arr![i32; 1, 2, 3]);
/// assert_eq!(last, 4);
/// # }
/// ```
fn pop_back(self) -> (Self::Shorter, T);
/// Returns a new array without the first element, and the first element.
/// Example:
///
/// ```rust
/// # use generic_array::{arr, sequence::Shorten};
/// # fn main() {
/// let a = arr![i32; 1, 2, 3, 4];
///
/// let (head, tail) = a.pop_front();
///
/// assert_eq!(head, 1);
/// assert_eq!(tail, arr![i32; 2, 3, 4]);
/// # }
/// ```
fn pop_front(self) -> (T, Self::Shorter);
}
unsafe impl<T, N: ArrayLength<T>> Lengthen<T> for GenericArray<T, N>
where
N: Add<B1>,
Add1<N>: ArrayLength<T>,
Add1<N>: Sub<B1, Output = N>,
Sub1<Add1<N>>: ArrayLength<T>,
{
type Longer = GenericArray<T, Add1<N>>;
fn append(self, last: T) -> Self::Longer {
let mut longer: MaybeUninit<Self::Longer> = MaybeUninit::uninit();
// Note this is *mut Self, so add(1) increments by the whole array
let out_ptr = longer.as_mut_ptr() as *mut Self;
unsafe {
// write self first
ptr::write(out_ptr, self);
// increment past self, then write the last
ptr::write(out_ptr.add(1) as *mut T, last);
longer.assume_init()
}
}
fn prepend(self, first: T) -> Self::Longer {
let mut longer: MaybeUninit<Self::Longer> = MaybeUninit::uninit();
// Note this is *mut T, so add(1) increments by a single T
let out_ptr = longer.as_mut_ptr() as *mut T;
unsafe {
// write the first at the start
ptr::write(out_ptr, first);
// increment past the first, then write self
ptr::write(out_ptr.add(1) as *mut Self, self);
longer.assume_init()
}
}
}
unsafe impl<T, N: ArrayLength<T>> Shorten<T> for GenericArray<T, N>
where
N: Sub<B1>,
Sub1<N>: ArrayLength<T>,
Sub1<N>: Add<B1, Output = N>,
Add1<Sub1<N>>: ArrayLength<T>,
{
type Shorter = GenericArray<T, Sub1<N>>;
fn pop_back(self) -> (Self::Shorter, T) {
let whole = ManuallyDrop::new(self);
unsafe {
let init = ptr::read(whole.as_ptr() as _);
let last = ptr::read(whole.as_ptr().add(Sub1::<N>::USIZE) as _);
(init, last)
}
}
fn pop_front(self) -> (T, Self::Shorter) {
// ensure this doesn't get dropped
let whole = ManuallyDrop::new(self);
unsafe {
let head = ptr::read(whole.as_ptr() as _);
let tail = ptr::read(whole.as_ptr().offset(1) as _);
(head, tail)
}
}
}
/// Defines a `GenericSequence` that can be split into two parts at a given pivot index.
pub unsafe trait Split<T, K>: GenericSequence<T>
where
K: ArrayLength<T>,
{
/// First part of the resulting split array
type First: GenericSequence<T>;
/// Second part of the resulting split array
type Second: GenericSequence<T>;
/// Splits an array at the given index, returning the separate parts of the array.
fn split(self) -> (Self::First, Self::Second);
}
unsafe impl<T, N, K> Split<T, K> for GenericArray<T, N>
where
N: ArrayLength<T>,
K: ArrayLength<T>,
N: Sub<K>,
Diff<N, K>: ArrayLength<T>,
{
type First = GenericArray<T, K>;
type Second = GenericArray<T, Diff<N, K>>;
fn split(self) -> (Self::First, Self::Second) {
unsafe {
// ensure this doesn't get dropped
let whole = ManuallyDrop::new(self);
let head = ptr::read(whole.as_ptr() as *const _);
let tail = ptr::read(whole.as_ptr().add(K::USIZE) as *const _);
(head, tail)
}
}
}
unsafe impl<'a, T, N, K> Split<T, K> for &'a GenericArray<T, N>
where
N: ArrayLength<T>,
K: ArrayLength<T> + 'static,
N: Sub<K>,
Diff<N, K>: ArrayLength<T>,
{
type First = &'a GenericArray<T, K>;
type Second = &'a GenericArray<T, Diff<N, K>>;
fn split(self) -> (Self::First, Self::Second) {
unsafe {
let ptr_to_first: *const T = self.as_ptr();
let head = &*(ptr_to_first as *const _);
let tail = &*(ptr_to_first.add(K::USIZE) as *const _);
(head, tail)
}
}
}
unsafe impl<'a, T, N, K> Split<T, K> for &'a mut GenericArray<T, N>
where
N: ArrayLength<T>,
K: ArrayLength<T> + 'static,
N: Sub<K>,
Diff<N, K>: ArrayLength<T>,
{
type First = &'a mut GenericArray<T, K>;
type Second = &'a mut GenericArray<T, Diff<N, K>>;
fn split(self) -> (Self::First, Self::Second) {
unsafe {
let ptr_to_first: *mut T = self.as_mut_ptr();
let head = &mut *(ptr_to_first as *mut _);
let tail = &mut *(ptr_to_first.add(K::USIZE) as *mut _);
(head, tail)
}
}
}
/// Defines `GenericSequence`s which can be joined together, forming a larger array.
pub unsafe trait Concat<T, M>: GenericSequence<T>
where
M: ArrayLength<T>,
{
/// Sequence to be concatenated with `self`
type Rest: GenericSequence<T, Length = M>;
/// Resulting sequence formed by the concatenation.
type Output: GenericSequence<T>;
/// Concatenate, or join, two sequences.
fn concat(self, rest: Self::Rest) -> Self::Output;
}
unsafe impl<T, N, M> Concat<T, M> for GenericArray<T, N>
where
N: ArrayLength<T> + Add<M>,
M: ArrayLength<T>,
Sum<N, M>: ArrayLength<T>,
{
type Rest = GenericArray<T, M>;
type Output = GenericArray<T, Sum<N, M>>;
fn concat(self, rest: Self::Rest) -> Self::Output {
let mut output: MaybeUninit<Self::Output> = MaybeUninit::uninit();
let out_ptr = output.as_mut_ptr() as *mut Self;
unsafe {
// write all of self to the pointer
ptr::write(out_ptr, self);
// increment past self, then write the rest
ptr::write(out_ptr.add(1) as *mut _, rest);
output.assume_init()
}
}
}