rand_distr/pert.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The PERT distribution.
use num_traits::Float;
use crate::{Beta, Distribution, Exp1, Open01, StandardNormal};
use rand::Rng;
use core::fmt;
/// The PERT distribution.
///
/// Similar to the [`Triangular`] distribution, the PERT distribution is
/// parameterised by a range and a mode within that range. Unlike the
/// [`Triangular`] distribution, the probability density function of the PERT
/// distribution is smooth, with a configurable weighting around the mode.
///
/// # Example
///
/// ```rust
/// use rand_distr::{Pert, Distribution};
///
/// let d = Pert::new(0., 5., 2.5).unwrap();
/// let v = d.sample(&mut rand::thread_rng());
/// println!("{} is from a PERT distribution", v);
/// ```
///
/// [`Triangular`]: crate::Triangular
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(serde::Serialize, serde::Deserialize))]
pub struct Pert<F>
where
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
{
min: F,
range: F,
beta: Beta<F>,
}
/// Error type returned from [`Pert`] constructors.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum PertError {
/// `max < min` or `min` or `max` is NaN.
RangeTooSmall,
/// `mode < min` or `mode > max` or `mode` is NaN.
ModeRange,
/// `shape < 0` or `shape` is NaN
ShapeTooSmall,
}
impl fmt::Display for PertError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
PertError::RangeTooSmall => "requirement min < max is not met in PERT distribution",
PertError::ModeRange => "mode is outside [min, max] in PERT distribution",
PertError::ShapeTooSmall => "shape < 0 or is NaN in PERT distribution",
})
}
}
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
impl std::error::Error for PertError {}
impl<F> Pert<F>
where
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
{
/// Set up the PERT distribution with defined `min`, `max` and `mode`.
///
/// This is equivalent to calling `Pert::new_shape` with `shape == 4.0`.
#[inline]
pub fn new(min: F, max: F, mode: F) -> Result<Pert<F>, PertError> {
Pert::new_with_shape(min, max, mode, F::from(4.).unwrap())
}
/// Set up the PERT distribution with defined `min`, `max`, `mode` and
/// `shape`.
pub fn new_with_shape(min: F, max: F, mode: F, shape: F) -> Result<Pert<F>, PertError> {
if !(max > min) {
return Err(PertError::RangeTooSmall);
}
if !(mode >= min && max >= mode) {
return Err(PertError::ModeRange);
}
if !(shape >= F::from(0.).unwrap()) {
return Err(PertError::ShapeTooSmall);
}
let range = max - min;
let mu = (min + max + shape * mode) / (shape + F::from(2.).unwrap());
let v = if mu == mode {
shape * F::from(0.5).unwrap() + F::from(1.).unwrap()
} else {
(mu - min) * (F::from(2.).unwrap() * mode - min - max) / ((mode - mu) * (max - min))
};
let w = v * (max - mu) / (mu - min);
let beta = Beta::new(v, w).map_err(|_| PertError::RangeTooSmall)?;
Ok(Pert { min, range, beta })
}
}
impl<F> Distribution<F> for Pert<F>
where
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
{
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
self.beta.sample(rng) * self.range + self.min
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_pert() {
for &(min, max, mode) in &[
(-1., 1., 0.),
(1., 2., 1.),
(5., 25., 25.),
] {
let _distr = Pert::new(min, max, mode).unwrap();
// TODO: test correctness
}
for &(min, max, mode) in &[
(-1., 1., 2.),
(-1., 1., -2.),
(2., 1., 1.),
] {
assert!(Pert::new(min, max, mode).is_err());
}
}
}