ring/rsa/padding/pss.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
// Copyright 2015-2016 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
use super::{super::PUBLIC_KEY_PUBLIC_MODULUS_MAX_LEN, mgf1, Padding, RsaEncoding, Verification};
use crate::{bits, digest, error, rand};
/// RSA PSS padding as described in [RFC 3447 Section 8.1].
///
/// See "`RSA_PSS_*` Details\" in `ring::signature`'s module-level
/// documentation for more details.
///
/// [RFC 3447 Section 8.1]: https://tools.ietf.org/html/rfc3447#section-8.1
#[allow(clippy::upper_case_acronyms)] // TODO: Until we implement cargo-semver-checks
#[derive(Debug)]
pub struct PSS {
digest_alg: &'static digest::Algorithm,
}
impl crate::sealed::Sealed for PSS {}
impl Padding for PSS {
fn digest_alg(&self) -> &'static digest::Algorithm {
self.digest_alg
}
}
impl RsaEncoding for PSS {
// Implement padding procedure per EMSA-PSS,
// https://tools.ietf.org/html/rfc3447#section-9.1.
fn encode(
&self,
m_hash: digest::Digest,
m_out: &mut [u8],
mod_bits: bits::BitLength,
rng: &dyn rand::SecureRandom,
) -> Result<(), error::Unspecified> {
let metrics = PSSMetrics::new(self.digest_alg, mod_bits)?;
// The `m_out` this function fills is the big-endian-encoded value of `m`
// from the specification, padded to `k` bytes, where `k` is the length
// in bytes of the public modulus. The spec says "Note that emLen will
// be one less than k if modBits - 1 is divisible by 8 and equal to k
// otherwise." In other words we might need to prefix `em` with a
// leading zero byte to form a correct value of `m`.
let em = if metrics.top_byte_mask == 0xff {
m_out[0] = 0;
&mut m_out[1..]
} else {
m_out
};
assert_eq!(em.len(), metrics.em_len);
// Steps 1 and 2 are done by the caller to produce `m_hash`.
// Step 3 is done by `PSSMetrics::new()` above.
let (db, digest_terminator) = em.split_at_mut(metrics.db_len);
let separator_pos = db.len() - 1 - metrics.s_len;
// Step 4.
let salt: &[u8] = {
let salt = &mut db[(separator_pos + 1)..];
rng.fill(salt)?; // salt
salt
};
// Steps 5 and 6.
let h = pss_digest(self.digest_alg, m_hash, salt);
// Step 7.
db[..separator_pos].fill(0); // ps
// Step 8.
db[separator_pos] = 0x01;
// Steps 9 and 10.
mgf1(self.digest_alg, h.as_ref(), db);
// Step 11.
db[0] &= metrics.top_byte_mask;
// Step 12.
digest_terminator[..metrics.h_len].copy_from_slice(h.as_ref());
digest_terminator[metrics.h_len] = 0xbc;
Ok(())
}
}
impl Verification for PSS {
// RSASSA-PSS-VERIFY from https://tools.ietf.org/html/rfc3447#section-8.1.2
// where steps 1, 2(a), and 2(b) have been done for us.
fn verify(
&self,
m_hash: digest::Digest,
m: &mut untrusted::Reader,
mod_bits: bits::BitLength,
) -> Result<(), error::Unspecified> {
let metrics = PSSMetrics::new(self.digest_alg, mod_bits)?;
// RSASSA-PSS-VERIFY Step 2(c). The `m` this function is given is the
// big-endian-encoded value of `m` from the specification, padded to
// `k` bytes, where `k` is the length in bytes of the public modulus.
// The spec. says "Note that emLen will be one less than k if
// modBits - 1 is divisible by 8 and equal to k otherwise," where `k`
// is the length in octets of the RSA public modulus `n`. In other
// words, `em` might have an extra leading zero byte that we need to
// strip before we start the PSS decoding steps which is an artifact of
// the `Verification` interface.
if metrics.top_byte_mask == 0xff {
if m.read_byte()? != 0 {
return Err(error::Unspecified);
}
};
let em = m;
// The rest of this function is EMSA-PSS-VERIFY from
// https://tools.ietf.org/html/rfc3447#section-9.1.2.
// Steps 1 and 2 are done by the caller to produce `m_hash`.
// Step 3 is done by `PSSMetrics::new()` above.
// Step 5, out of order.
let masked_db = em.read_bytes(metrics.db_len)?;
let h_hash = em.read_bytes(metrics.h_len)?;
// Step 4.
if em.read_byte()? != 0xbc {
return Err(error::Unspecified);
}
// Step 7.
let mut db = [0u8; PUBLIC_KEY_PUBLIC_MODULUS_MAX_LEN];
let db = &mut db[..metrics.db_len];
mgf1(self.digest_alg, h_hash.as_slice_less_safe(), db);
masked_db.read_all(error::Unspecified, |masked_bytes| {
// Step 6. Check the top bits of first byte are zero.
let b = masked_bytes.read_byte()?;
if b & !metrics.top_byte_mask != 0 {
return Err(error::Unspecified);
}
db[0] ^= b;
// Step 8.
for db in db[1..].iter_mut() {
*db ^= masked_bytes.read_byte()?;
}
Ok(())
})?;
// Step 9.
db[0] &= metrics.top_byte_mask;
// Step 10.
let ps_len = metrics.ps_len;
if db[0..ps_len].iter().any(|&db| db != 0) {
return Err(error::Unspecified);
}
if db[metrics.ps_len] != 1 {
return Err(error::Unspecified);
}
// Step 11.
let salt = &db[(db.len() - metrics.s_len)..];
// Step 12 and 13.
let h_prime = pss_digest(self.digest_alg, m_hash, salt);
// Step 14.
if h_hash.as_slice_less_safe() != h_prime.as_ref() {
return Err(error::Unspecified);
}
Ok(())
}
}
struct PSSMetrics {
#[cfg_attr(not(feature = "alloc"), allow(dead_code))]
em_len: usize,
db_len: usize,
ps_len: usize,
s_len: usize,
h_len: usize,
top_byte_mask: u8,
}
impl PSSMetrics {
fn new(
digest_alg: &'static digest::Algorithm,
mod_bits: bits::BitLength,
) -> Result<Self, error::Unspecified> {
let em_bits = mod_bits.try_sub_1()?;
let em_len = em_bits.as_usize_bytes_rounded_up();
let leading_zero_bits = (8 * em_len) - em_bits.as_bits();
debug_assert!(leading_zero_bits < 8);
let top_byte_mask = 0xffu8 >> leading_zero_bits;
let h_len = digest_alg.output_len();
// We require the salt length to be equal to the digest length.
let s_len = h_len;
// Step 3 of both `EMSA-PSS-ENCODE` is `EMSA-PSS-VERIFY` requires that
// we reject inputs where "emLen < hLen + sLen + 2". The definition of
// `emBits` in RFC 3447 Sections 9.1.1 and 9.1.2 says `emBits` must be
// "at least 8hLen + 8sLen + 9". Since 9 bits requires two bytes, these
// two conditions are equivalent. 9 bits are required as the 0x01
// before the salt requires 1 bit and the 0xbc after the digest
// requires 8 bits.
let db_len = em_len.checked_sub(1 + s_len).ok_or(error::Unspecified)?;
let ps_len = db_len.checked_sub(h_len + 1).ok_or(error::Unspecified)?;
debug_assert!(em_bits.as_bits() >= (8 * h_len) + (8 * s_len) + 9);
Ok(Self {
em_len,
db_len,
ps_len,
s_len,
h_len,
top_byte_mask,
})
}
}
fn pss_digest(
digest_alg: &'static digest::Algorithm,
m_hash: digest::Digest,
salt: &[u8],
) -> digest::Digest {
// Fixed prefix.
const PREFIX_ZEROS: [u8; 8] = [0u8; 8];
// Encoding step 5 and 6, Verification step 12 and 13.
let mut ctx = digest::Context::new(digest_alg);
ctx.update(&PREFIX_ZEROS);
ctx.update(m_hash.as_ref());
ctx.update(salt);
ctx.finish()
}
macro_rules! rsa_pss_padding {
( $vis:vis $PADDING_ALGORITHM:ident, $digest_alg:expr, $doc_str:expr ) => {
#[doc=$doc_str]
$vis static $PADDING_ALGORITHM: PSS = PSS {
digest_alg: $digest_alg,
};
};
}
rsa_pss_padding!(
pub RSA_PSS_SHA256,
&digest::SHA256,
"RSA PSS padding using SHA-256 for RSA signatures.\n\nSee
\"`RSA_PSS_*` Details\" in `ring::signature`'s module-level
documentation for more details."
);
rsa_pss_padding!(
pub RSA_PSS_SHA384,
&digest::SHA384,
"RSA PSS padding using SHA-384 for RSA signatures.\n\nSee
\"`RSA_PSS_*` Details\" in `ring::signature`'s module-level
documentation for more details."
);
rsa_pss_padding!(
pub RSA_PSS_SHA512,
&digest::SHA512,
"RSA PSS padding using SHA-512 for RSA signatures.\n\nSee
\"`RSA_PSS_*` Details\" in `ring::signature`'s module-level
documentation for more details."
);