crypto_bigint/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
#![no_std]
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![doc = include_str!("../README.md")]
#![doc(
html_logo_url = "https://raw.githubusercontent.com/RustCrypto/meta/master/logo.svg",
html_favicon_url = "https://raw.githubusercontent.com/RustCrypto/meta/master/logo.svg"
)]
#![deny(unsafe_code)]
#![warn(
clippy::mod_module_files,
clippy::unwrap_used,
missing_docs,
missing_debug_implementations,
missing_copy_implementations,
rust_2018_idioms,
trivial_casts,
trivial_numeric_casts,
unused_qualifications
)]
//! ## Usage
//!
//! This crate defines a [`Uint`] type which is const generic around an inner
//! [`Limb`] array, where a [`Limb`] is a newtype for a word-sized integer.
//! Thus large integers are represented as arrays of smaller integers which
//! are sized appropriately for the CPU, giving us some assurances of how
//! arithmetic operations over those smaller integers will behave.
//!
//! To obtain appropriately sized integers regardless of what a given CPU's
//! word size happens to be, a number of portable type aliases are provided for
//! integer sizes commonly used in cryptography, for example:
//! [`U128`], [`U384`], [`U256`], [`U2048`], [`U3072`], [`U4096`].
//!
//! ### `const fn` usage
//!
//! The [`Uint`] type provides a number of `const fn` inherent methods which
//! can be used for initializing and performing arithmetic on big integers in
//! const contexts:
//!
//! ```
//! use crypto_bigint::U256;
//!
//! // Parse a constant from a big endian hexadecimal string.
//! pub const MODULUS: U256 =
//! U256::from_be_hex("ffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551");
//!
//! // Compute `MODULUS` shifted right by 1 at compile time
//! pub const MODULUS_SHR1: U256 = MODULUS.shr_vartime(1);
//! ```
//!
//! Note that large constant computations may accidentally trigger a the `const_eval_limit` of the compiler.
//! The current way to deal with this problem is to either simplify this computation,
//! or increase the compiler's limit (currently a nightly feature).
//! One can completely remove the compiler's limit using:
//! ```ignore
//! #![feature(const_eval_limit)]
//! #![const_eval_limit = "0"]
//! ```
//!
//! ### Trait-based usage
//!
//! The [`Uint`] type itself does not implement the standard arithmetic traits
//! such as [`Add`], [`Sub`], [`Mul`], and [`Div`].
//!
//! To use these traits you must first pick a wrapper type which determines
//! overflow behavior: [`Wrapping`] or [`Checked`].
//!
//! #### Wrapping arithmetic
//!
//! ```
//! use crypto_bigint::{U256, Wrapping};
//!
//! let a = Wrapping(U256::MAX);
//! let b = Wrapping(U256::ONE);
//! let c = a + b;
//!
//! // `MAX` + 1 wraps back around to zero
//! assert_eq!(c.0, U256::ZERO);
//! ```
//!
//! #### Checked arithmetic
//!
//! ```
//! use crypto_bigint::{U256, Checked};
//!
//! let a = Checked::new(U256::ONE);
//! let b = Checked::new(U256::from(2u8));
//! let c = a + b;
//! assert_eq!(c.0.unwrap(), U256::from(3u8))
//! ```
//!
//! ### Modular arithmetic
//!
//! This library has initial support for modular arithmetic in the form of the
//! [`AddMod`], [`SubMod`], [`NegMod`], and [`MulMod`] traits, as well as the
//! support for the [`Rem`] trait when used with a [`NonZero`] operand.
//!
//! ```
//! use crypto_bigint::{AddMod, U256};
//!
//! // mod 3
//! let modulus = U256::from(3u8);
//!
//! // 1 + 1 mod 3 = 2
//! let a = U256::ONE.add_mod(&U256::ONE, &modulus);
//! assert_eq!(a, U256::from(2u8));
//!
//! // 2 + 1 mod 3 = 0
//! let b = a.add_mod(&U256::ONE, &modulus);
//! assert_eq!(b, U256::ZERO);
//! ```
//!
//! It also supports modular arithmetic over constant moduli using `Residue`,
//! and over moduli set at runtime using `DynResidue`.
//! That includes modular exponentiation and multiplicative inverses.
//! These features are described in the [`modular`] module.
//!
//! ### Random number generation
//!
//! When the `rand_core` or `rand` features of this crate are enabled, it's
//! possible to generate random numbers using any CSRNG by using the
//! [`Random`] trait:
//!
//! ```
//! # #[cfg(feature = "rand")]
//! # {
//! use crypto_bigint::{Random, U256, rand_core::OsRng};
//!
//! let n = U256::random(&mut OsRng);
//! # }
//! ```
//!
//! #### Modular random number generation
//!
//! The [`RandomMod`] trait supports generating random numbers with a uniform
//! distribution around a given [`NonZero`] modulus.
//!
//! ```
//! # #[cfg(feature = "rand")]
//! # {
//! use crypto_bigint::{NonZero, RandomMod, U256, rand_core::OsRng};
//!
//! let modulus = NonZero::new(U256::from(3u8)).unwrap();
//! let n = U256::random_mod(&mut OsRng, &modulus);
//! # }
//! ```
//!
//! [`Add`]: core::ops::Add
//! [`Div`]: core::ops::Div
//! [`Mul`]: core::ops::Mul
//! [`Rem`]: core::ops::Rem
//! [`Sub`]: core::ops::Sub
#[cfg(feature = "alloc")]
#[allow(unused_imports)]
#[macro_use]
extern crate alloc;
#[macro_use]
mod macros;
#[cfg(feature = "generic-array")]
mod array;
#[cfg(feature = "alloc")]
mod boxed;
mod checked;
mod ct_choice;
mod limb;
mod non_zero;
mod traits;
mod uint;
mod wrapping;
pub use crate::{
checked::Checked,
ct_choice::CtChoice,
limb::{Limb, WideWord, Word},
non_zero::NonZero,
traits::*,
uint::div_limb::Reciprocal,
uint::*,
wrapping::Wrapping,
};
pub use subtle;
#[cfg(feature = "alloc")]
pub use crate::boxed::uint::BoxedUint;
#[cfg(feature = "generic-array")]
pub use {
crate::array::{ArrayDecoding, ArrayEncoding, ByteArray},
generic_array::{self, typenum::consts},
};
#[cfg(feature = "rand_core")]
pub use rand_core;
#[cfg(feature = "rlp")]
pub use rlp;
#[cfg(feature = "zeroize")]
pub use zeroize;
/// Import prelude for this crate: includes important traits.
pub mod prelude {
pub use crate::traits::*;
#[cfg(feature = "generic-array")]
pub use crate::array::{ArrayDecoding, ArrayEncoding};
}
#[cfg(sidefuzz)]
#[no_mangle]
pub extern "C" fn fuzz() {
let input = sidefuzz::fetch_input(32); // 32 bytes of of fuzzing input as a &[u8]
sidefuzz::black_box(my_hopefully_constant_fn(input));
}