tracing/instrument.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
use crate::{
dispatcher::{self, Dispatch},
span::Span,
};
use core::{
future::Future,
marker::Sized,
mem::ManuallyDrop,
pin::Pin,
task::{Context, Poll},
};
use pin_project_lite::pin_project;
/// Attaches spans to a [`std::future::Future`].
///
/// Extension trait allowing futures to be
/// instrumented with a `tracing` [span].
///
/// [span]: super::Span
pub trait Instrument: Sized {
/// Instruments this type with the provided [`Span`], returning an
/// `Instrumented` wrapper.
///
/// The attached [`Span`] will be [entered] every time the instrumented
/// [`Future`] is polled or [`Drop`]ped.
///
/// # Examples
///
/// Instrumenting a future:
///
/// ```rust
/// use tracing::Instrument;
///
/// # async fn doc() {
/// let my_future = async {
/// // ...
/// };
///
/// my_future
/// .instrument(tracing::info_span!("my_future"))
/// .await
/// # }
/// ```
///
/// The [`Span::or_current`] combinator can be used in combination with
/// `instrument` to ensure that the [current span] is attached to the
/// future if the span passed to `instrument` is [disabled]:
///
/// ```
/// use tracing::Instrument;
/// # mod tokio {
/// # pub(super) fn spawn(_: impl std::future::Future) {}
/// # }
///
/// let my_future = async {
/// // ...
/// };
///
/// let outer_span = tracing::info_span!("outer").entered();
///
/// // If the "my_future" span is enabled, then the spawned task will
/// // be within both "my_future" *and* "outer", since "outer" is
/// // "my_future"'s parent. However, if "my_future" is disabled,
/// // the spawned task will *not* be in any span.
/// tokio::spawn(
/// my_future
/// .instrument(tracing::debug_span!("my_future"))
/// );
///
/// // Using `Span::or_current` ensures the spawned task is instrumented
/// // with the current span, if the new span passed to `instrument` is
/// // not enabled. This means that if the "my_future" span is disabled,
/// // the spawned task will still be instrumented with the "outer" span:
/// # let my_future = async {};
/// tokio::spawn(
/// my_future
/// .instrument(tracing::debug_span!("my_future").or_current())
/// );
/// ```
///
/// [entered]: super::Span::enter()
/// [`Span::or_current`]: super::Span::or_current()
/// [current span]: super::Span::current()
/// [disabled]: super::Span::is_disabled()
/// [`Future`]: std::future::Future
fn instrument(self, span: Span) -> Instrumented<Self> {
Instrumented {
inner: ManuallyDrop::new(self),
span,
}
}
/// Instruments this type with the [current] [`Span`], returning an
/// `Instrumented` wrapper.
///
/// The attached [`Span`] will be [entered] every time the instrumented
/// [`Future`] is polled or [`Drop`]ped.
///
/// This can be used to propagate the current span when spawning a new future.
///
/// # Examples
///
/// ```rust
/// use tracing::Instrument;
///
/// # mod tokio {
/// # pub(super) fn spawn(_: impl std::future::Future) {}
/// # }
/// # async fn doc() {
/// let span = tracing::info_span!("my_span");
/// let _enter = span.enter();
///
/// // ...
///
/// let future = async {
/// tracing::debug!("this event will occur inside `my_span`");
/// // ...
/// };
/// tokio::spawn(future.in_current_span());
/// # }
/// ```
///
/// [current]: super::Span::current()
/// [entered]: super::Span::enter()
/// [`Span`]: crate::Span
/// [`Future`]: std::future::Future
#[inline]
fn in_current_span(self) -> Instrumented<Self> {
self.instrument(Span::current())
}
}
/// Extension trait allowing futures to be instrumented with
/// a `tracing` [`Subscriber`](crate::Subscriber).
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
pub trait WithSubscriber: Sized {
/// Attaches the provided [`Subscriber`] to this type, returning a
/// [`WithDispatch`] wrapper.
///
/// The attached [`Subscriber`] will be set as the [default] when the returned
/// [`Future`] is polled.
///
/// # Examples
///
/// ```
/// # use tracing::subscriber::NoSubscriber as MySubscriber;
/// # use tracing::subscriber::NoSubscriber as MyOtherSubscriber;
/// # async fn docs() {
/// use tracing::instrument::WithSubscriber;
///
/// // Set the default `Subscriber`
/// let _default = tracing::subscriber::set_default(MySubscriber::default());
///
/// tracing::info!("this event will be recorded by the default `Subscriber`");
///
/// // Create a different `Subscriber` and attach it to a future.
/// let other_subscriber = MyOtherSubscriber::default();
/// let future = async {
/// tracing::info!("this event will be recorded by the other `Subscriber`");
/// // ...
/// };
///
/// future
/// // Attach the other `Subscriber` to the future before awaiting it
/// .with_subscriber(other_subscriber)
/// .await;
///
/// // Once the future has completed, we return to the default `Subscriber`.
/// tracing::info!("this event will be recorded by the default `Subscriber`");
/// # }
/// ```
///
/// [`Subscriber`]: super::Subscriber
/// [default]: crate::dispatcher#setting-the-default-subscriber
/// [`Future`]: std::future::Future
fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where
S: Into<Dispatch>,
{
WithDispatch {
inner: self,
dispatcher: subscriber.into(),
}
}
/// Attaches the current [default] [`Subscriber`] to this type, returning a
/// [`WithDispatch`] wrapper.
///
/// The attached `Subscriber` will be set as the [default] when the returned
/// [`Future`] is polled.
///
/// This can be used to propagate the current dispatcher context when
/// spawning a new future that may run on a different thread.
///
/// # Examples
///
/// ```
/// # mod tokio {
/// # pub(super) fn spawn(_: impl std::future::Future) {}
/// # }
/// # use tracing::subscriber::NoSubscriber as MySubscriber;
/// # async fn docs() {
/// use tracing::instrument::WithSubscriber;
///
/// // Using `set_default` (rather than `set_global_default`) sets the
/// // default `Subscriber` for *this* thread only.
/// let _default = tracing::subscriber::set_default(MySubscriber::default());
///
/// let future = async {
/// // ...
/// };
///
/// // If a multi-threaded async runtime is in use, this spawned task may
/// // run on a different thread, in a different default `Subscriber`'s context.
/// tokio::spawn(future);
///
/// // However, calling `with_current_subscriber` on the future before
/// // spawning it, ensures that the current thread's default `Subscriber` is
/// // propagated to the spawned task, regardless of where it executes:
/// # let future = async { };
/// tokio::spawn(future.with_current_subscriber());
/// # }
/// ```
/// [`Subscriber`]: super::Subscriber
/// [default]: crate::dispatcher#setting-the-default-subscriber
/// [`Future`]: std::future::Future
#[inline]
fn with_current_subscriber(self) -> WithDispatch<Self> {
WithDispatch {
inner: self,
dispatcher: crate::dispatcher::get_default(|default| default.clone()),
}
}
}
pin_project! {
/// A [`Future`] that has been instrumented with a `tracing` [`Subscriber`].
///
/// This type is returned by the [`WithSubscriber`] extension trait. See that
/// trait's documentation for details.
///
/// [`Future`]: std::future::Future
/// [`Subscriber`]: crate::Subscriber
#[derive(Clone, Debug)]
#[must_use = "futures do nothing unless you `.await` or poll them"]
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
pub struct WithDispatch<T> {
#[pin]
inner: T,
dispatcher: Dispatch,
}
}
pin_project! {
/// A [`Future`] that has been instrumented with a `tracing` [`Span`].
///
/// This type is returned by the [`Instrument`] extension trait. See that
/// trait's documentation for details.
///
/// [`Future`]: std::future::Future
/// [`Span`]: crate::Span
#[project = InstrumentedProj]
#[project_ref = InstrumentedProjRef]
#[derive(Debug, Clone)]
#[must_use = "futures do nothing unless you `.await` or poll them"]
pub struct Instrumented<T> {
// `ManuallyDrop` is used here to to enter instrument `Drop` by entering
// `Span` and executing `ManuallyDrop::drop`.
#[pin]
inner: ManuallyDrop<T>,
span: Span,
}
impl<T> PinnedDrop for Instrumented<T> {
fn drop(this: Pin<&mut Self>) {
let this = this.project();
let _enter = this.span.enter();
// SAFETY: 1. `Pin::get_unchecked_mut()` is safe, because this isn't
// different from wrapping `T` in `Option` and calling
// `Pin::set(&mut this.inner, None)`, except avoiding
// additional memory overhead.
// 2. `ManuallyDrop::drop()` is safe, because
// `PinnedDrop::drop()` is guaranteed to be called only
// once.
unsafe { ManuallyDrop::drop(this.inner.get_unchecked_mut()) }
}
}
}
impl<'a, T> InstrumentedProj<'a, T> {
/// Get a mutable reference to the [`Span`] a pinned mutable reference to
/// the wrapped type.
fn span_and_inner_pin_mut(self) -> (&'a mut Span, Pin<&'a mut T>) {
// SAFETY: As long as `ManuallyDrop<T>` does not move, `T` won't move
// and `inner` is valid, because `ManuallyDrop::drop` is called
// only inside `Drop` of the `Instrumented`.
let inner = unsafe { self.inner.map_unchecked_mut(|v| &mut **v) };
(self.span, inner)
}
}
impl<'a, T> InstrumentedProjRef<'a, T> {
/// Get a reference to the [`Span`] a pinned reference to the wrapped type.
fn span_and_inner_pin_ref(self) -> (&'a Span, Pin<&'a T>) {
// SAFETY: As long as `ManuallyDrop<T>` does not move, `T` won't move
// and `inner` is valid, because `ManuallyDrop::drop` is called
// only inside `Drop` of the `Instrumented`.
let inner = unsafe { self.inner.map_unchecked(|v| &**v) };
(self.span, inner)
}
}
// === impl Instrumented ===
impl<T: Future> Future for Instrumented<T> {
type Output = T::Output;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let (span, inner) = self.project().span_and_inner_pin_mut();
let _enter = span.enter();
inner.poll(cx)
}
}
impl<T: Sized> Instrument for T {}
impl<T> Instrumented<T> {
/// Borrows the `Span` that this type is instrumented by.
pub fn span(&self) -> &Span {
&self.span
}
/// Mutably borrows the `Span` that this type is instrumented by.
pub fn span_mut(&mut self) -> &mut Span {
&mut self.span
}
/// Borrows the wrapped type.
pub fn inner(&self) -> &T {
&self.inner
}
/// Mutably borrows the wrapped type.
pub fn inner_mut(&mut self) -> &mut T {
&mut self.inner
}
/// Get a pinned reference to the wrapped type.
pub fn inner_pin_ref(self: Pin<&Self>) -> Pin<&T> {
self.project_ref().span_and_inner_pin_ref().1
}
/// Get a pinned mutable reference to the wrapped type.
pub fn inner_pin_mut(self: Pin<&mut Self>) -> Pin<&mut T> {
self.project().span_and_inner_pin_mut().1
}
/// Consumes the `Instrumented`, returning the wrapped type.
///
/// Note that this drops the span.
pub fn into_inner(self) -> T {
// To manually destructure `Instrumented` without `Drop`, we
// move it into a ManuallyDrop and use pointers to its fields
let this = ManuallyDrop::new(self);
let span: *const Span = &this.span;
let inner: *const ManuallyDrop<T> = &this.inner;
// SAFETY: Those pointers are valid for reads, because `Drop` didn't
// run, and properly aligned, because `Instrumented` isn't
// `#[repr(packed)]`.
let _span = unsafe { span.read() };
let inner = unsafe { inner.read() };
ManuallyDrop::into_inner(inner)
}
}
// === impl WithDispatch ===
#[cfg(feature = "std")]
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
impl<T: Future> Future for WithDispatch<T> {
type Output = T::Output;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let this = self.project();
let dispatcher = this.dispatcher;
let future = this.inner;
let _default = dispatcher::set_default(dispatcher);
future.poll(cx)
}
}
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
impl<T: Sized> WithSubscriber for T {}
#[cfg(feature = "std")]
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
impl<T> WithDispatch<T> {
/// Borrows the [`Dispatch`] that is entered when this type is polled.
pub fn dispatcher(&self) -> &Dispatch {
&self.dispatcher
}
/// Borrows the wrapped type.
pub fn inner(&self) -> &T {
&self.inner
}
/// Mutably borrows the wrapped type.
pub fn inner_mut(&mut self) -> &mut T {
&mut self.inner
}
/// Get a pinned reference to the wrapped type.
pub fn inner_pin_ref(self: Pin<&Self>) -> Pin<&T> {
self.project_ref().inner
}
/// Get a pinned mutable reference to the wrapped type.
pub fn inner_pin_mut(self: Pin<&mut Self>) -> Pin<&mut T> {
self.project().inner
}
/// Consumes the `Instrumented`, returning the wrapped type.
///
/// Note that this drops the span.
pub fn into_inner(self) -> T {
self.inner
}
}