libm/math/
sinhf.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
use super::{expm1f, k_expo2f};

/// The hyperbolic sine of `x` (f32).
#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
pub fn sinhf(x: f32) -> f32 {
    let mut h = 0.5f32;
    let mut ix = x.to_bits();
    if (ix >> 31) != 0 {
        h = -h;
    }
    /* |x| */
    ix &= 0x7fffffff;
    let absx = f32::from_bits(ix);
    let w = ix;

    /* |x| < log(FLT_MAX) */
    if w < 0x42b17217 {
        let t = expm1f(absx);
        if w < 0x3f800000 {
            if w < (0x3f800000 - (12 << 23)) {
                return x;
            }
            return h * (2. * t - t * t / (t + 1.));
        }
        return h * (t + t / (t + 1.));
    }

    /* |x| > logf(FLT_MAX) or nan */
    2. * h * k_expo2f(absx)
}