rustls/msgs/message/
outbound.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
use alloc::vec::Vec;

use super::{MessageError, PlainMessage, HEADER_SIZE, MAX_PAYLOAD};
use crate::enums::{ContentType, ProtocolVersion};
use crate::msgs::base::Payload;
use crate::msgs::codec::{Codec, Reader};
use crate::record_layer::RecordLayer;

/// A TLS frame, named `TLSPlaintext` in the standard.
///
/// This outbound type borrows its "to be encrypted" payload from the "user".
/// It is used for fragmenting and is consumed by encryption.
#[derive(Debug)]
pub struct OutboundPlainMessage<'a> {
    pub typ: ContentType,
    pub version: ProtocolVersion,
    pub payload: OutboundChunks<'a>,
}

impl OutboundPlainMessage<'_> {
    pub(crate) fn encoded_len(&self, record_layer: &RecordLayer) -> usize {
        HEADER_SIZE + record_layer.encrypted_len(self.payload.len())
    }

    pub(crate) fn to_unencrypted_opaque(&self) -> OutboundOpaqueMessage {
        let mut payload = PrefixedPayload::with_capacity(self.payload.len());
        payload.extend_from_chunks(&self.payload);
        OutboundOpaqueMessage {
            version: self.version,
            typ: self.typ,
            payload,
        }
    }
}

/// A collection of borrowed plaintext slices.
///
/// Warning: OutboundChunks does not guarantee that the simplest variant is used.
/// Multiple can hold non fragmented or empty payloads.
#[derive(Debug, Clone)]
pub enum OutboundChunks<'a> {
    /// A single byte slice. Contrary to `Multiple`, this uses a single pointer indirection
    Single(&'a [u8]),
    /// A collection of chunks (byte slices)
    /// and cursors to single out a fragmented range of bytes.
    /// OutboundChunks assumes that start <= end
    Multiple {
        chunks: &'a [&'a [u8]],
        start: usize,
        end: usize,
    },
}

impl<'a> OutboundChunks<'a> {
    /// Create a payload from a slice of byte slices.
    /// If fragmented the cursors are added by default: start = 0, end = length
    pub fn new(chunks: &'a [&'a [u8]]) -> Self {
        if chunks.len() == 1 {
            Self::Single(chunks[0])
        } else {
            Self::Multiple {
                chunks,
                start: 0,
                end: chunks
                    .iter()
                    .map(|chunk| chunk.len())
                    .sum(),
            }
        }
    }

    /// Create a payload with a single empty slice
    pub fn new_empty() -> Self {
        Self::Single(&[])
    }

    /// Flatten the slice of byte slices to an owned vector of bytes
    pub fn to_vec(&self) -> Vec<u8> {
        let mut vec = Vec::with_capacity(self.len());
        self.copy_to_vec(&mut vec);
        vec
    }

    /// Append all bytes to a vector
    pub fn copy_to_vec(&self, vec: &mut Vec<u8>) {
        match *self {
            Self::Single(chunk) => vec.extend_from_slice(chunk),
            Self::Multiple { chunks, start, end } => {
                let mut size = 0;
                for chunk in chunks.iter() {
                    let psize = size;
                    let len = chunk.len();
                    size += len;
                    if size <= start || psize >= end {
                        continue;
                    }
                    let start = start.saturating_sub(psize);
                    let end = if end - psize < len { end - psize } else { len };
                    vec.extend_from_slice(&chunk[start..end]);
                }
            }
        }
    }

    /// Split self in two, around an index
    /// Works similarly to `split_at` in the core library, except it doesn't panic if out of bound
    pub fn split_at(&self, mid: usize) -> (Self, Self) {
        match *self {
            Self::Single(chunk) => {
                let mid = Ord::min(mid, chunk.len());
                (Self::Single(&chunk[..mid]), Self::Single(&chunk[mid..]))
            }
            Self::Multiple { chunks, start, end } => {
                let mid = Ord::min(start + mid, end);
                (
                    Self::Multiple {
                        chunks,
                        start,
                        end: mid,
                    },
                    Self::Multiple {
                        chunks,
                        start: mid,
                        end,
                    },
                )
            }
        }
    }

    /// Returns true if the payload is empty
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Returns the cumulative length of all chunks
    pub fn len(&self) -> usize {
        match self {
            Self::Single(chunk) => chunk.len(),
            Self::Multiple { start, end, .. } => end - start,
        }
    }
}

impl<'a> From<&'a [u8]> for OutboundChunks<'a> {
    fn from(payload: &'a [u8]) -> Self {
        Self::Single(payload)
    }
}

/// A TLS frame, named `TLSPlaintext` in the standard.
///
/// This outbound type owns all memory for its interior parts.
/// It results from encryption and is used for io write.
#[derive(Clone, Debug)]
pub struct OutboundOpaqueMessage {
    pub typ: ContentType,
    pub version: ProtocolVersion,
    pub payload: PrefixedPayload,
}

impl OutboundOpaqueMessage {
    /// Construct a new `OpaqueMessage` from constituent fields.
    ///
    /// `body` is moved into the `payload` field.
    pub fn new(typ: ContentType, version: ProtocolVersion, payload: PrefixedPayload) -> Self {
        Self {
            typ,
            version,
            payload,
        }
    }

    /// Construct by decoding from a [`Reader`].
    ///
    /// `MessageError` allows callers to distinguish between valid prefixes (might
    /// become valid if we read more data) and invalid data.
    pub fn read(r: &mut Reader<'_>) -> Result<Self, MessageError> {
        let (typ, version, len) = read_opaque_message_header(r)?;

        let content = r
            .take(len as usize)
            .ok_or(MessageError::TooShortForLength)?;

        Ok(Self {
            typ,
            version,
            payload: PrefixedPayload::from(content),
        })
    }

    pub fn encode(self) -> Vec<u8> {
        let length = self.payload.len() as u16;
        let mut encoded_payload = self.payload.0;
        encoded_payload[0] = self.typ.into();
        encoded_payload[1..3].copy_from_slice(&self.version.to_array());
        encoded_payload[3..5].copy_from_slice(&(length).to_be_bytes());
        encoded_payload
    }

    /// Force conversion into a plaintext message.
    ///
    /// This should only be used for messages that are known to be in plaintext. Otherwise, the
    /// `OutboundOpaqueMessage` should be decrypted into a `PlainMessage` using a `MessageDecrypter`.
    pub fn into_plain_message(self) -> PlainMessage {
        PlainMessage {
            version: self.version,
            typ: self.typ,
            payload: Payload::Owned(self.payload.as_ref().to_vec()),
        }
    }
}

#[derive(Clone, Debug)]
pub struct PrefixedPayload(Vec<u8>);

impl PrefixedPayload {
    pub fn with_capacity(capacity: usize) -> Self {
        let mut prefixed_payload = Vec::with_capacity(HEADER_SIZE + capacity);
        prefixed_payload.resize(HEADER_SIZE, 0);
        Self(prefixed_payload)
    }

    pub fn extend_from_slice(&mut self, slice: &[u8]) {
        self.0.extend_from_slice(slice)
    }

    pub fn extend_from_chunks(&mut self, chunks: &OutboundChunks<'_>) {
        chunks.copy_to_vec(&mut self.0)
    }

    pub fn truncate(&mut self, len: usize) {
        self.0.truncate(len + HEADER_SIZE)
    }

    fn len(&self) -> usize {
        self.0.len() - HEADER_SIZE
    }
}

impl AsRef<[u8]> for PrefixedPayload {
    fn as_ref(&self) -> &[u8] {
        &self.0[HEADER_SIZE..]
    }
}

impl AsMut<[u8]> for PrefixedPayload {
    fn as_mut(&mut self) -> &mut [u8] {
        &mut self.0[HEADER_SIZE..]
    }
}

impl<'a> Extend<&'a u8> for PrefixedPayload {
    fn extend<T: IntoIterator<Item = &'a u8>>(&mut self, iter: T) {
        self.0.extend(iter)
    }
}

impl From<&[u8]> for PrefixedPayload {
    fn from(content: &[u8]) -> Self {
        let mut payload = Vec::with_capacity(HEADER_SIZE + content.len());
        payload.extend(&[0u8; HEADER_SIZE]);
        payload.extend(content);
        Self(payload)
    }
}

impl<const N: usize> From<&[u8; N]> for PrefixedPayload {
    fn from(content: &[u8; N]) -> Self {
        Self::from(&content[..])
    }
}

pub(crate) fn read_opaque_message_header(
    r: &mut Reader<'_>,
) -> Result<(ContentType, ProtocolVersion, u16), MessageError> {
    let typ = ContentType::read(r).map_err(|_| MessageError::TooShortForHeader)?;
    // Don't accept any new content-types.
    if let ContentType::Unknown(_) = typ {
        return Err(MessageError::InvalidContentType);
    }

    let version = ProtocolVersion::read(r).map_err(|_| MessageError::TooShortForHeader)?;
    // Accept only versions 0x03XX for any XX.
    match version {
        ProtocolVersion::Unknown(ref v) if (v & 0xff00) != 0x0300 => {
            return Err(MessageError::UnknownProtocolVersion);
        }
        _ => {}
    };

    let len = u16::read(r).map_err(|_| MessageError::TooShortForHeader)?;

    // Reject undersize messages
    //  implemented per section 5.1 of RFC8446 (TLSv1.3)
    //              per section 6.2.1 of RFC5246 (TLSv1.2)
    if typ != ContentType::ApplicationData && len == 0 {
        return Err(MessageError::InvalidEmptyPayload);
    }

    // Reject oversize messages
    if len >= MAX_PAYLOAD {
        return Err(MessageError::MessageTooLarge);
    }

    Ok((typ, version, len))
}

#[cfg(test)]
mod tests {
    use std::{println, vec};

    use super::*;

    #[test]
    fn split_at_with_single_slice() {
        let owner: &[u8] = &[0, 1, 2, 3, 4, 5, 6, 7];
        let borrowed_payload = OutboundChunks::Single(owner);

        let (before, after) = borrowed_payload.split_at(6);
        println!("before:{:?}\nafter:{:?}", before, after);
        assert_eq!(before.to_vec(), &[0, 1, 2, 3, 4, 5]);
        assert_eq!(after.to_vec(), &[6, 7]);
    }

    #[test]
    fn split_at_with_multiple_slices() {
        let owner: Vec<&[u8]> = vec![&[0, 1, 2, 3], &[4, 5], &[6, 7, 8], &[9, 10, 11, 12]];
        let borrowed_payload = OutboundChunks::new(&owner);

        let (before, after) = borrowed_payload.split_at(3);
        println!("before:{:?}\nafter:{:?}", before, after);
        assert_eq!(before.to_vec(), &[0, 1, 2]);
        assert_eq!(after.to_vec(), &[3, 4, 5, 6, 7, 8, 9, 10, 11, 12]);

        let (before, after) = borrowed_payload.split_at(8);
        println!("before:{:?}\nafter:{:?}", before, after);
        assert_eq!(before.to_vec(), &[0, 1, 2, 3, 4, 5, 6, 7]);
        assert_eq!(after.to_vec(), &[8, 9, 10, 11, 12]);

        let (before, after) = borrowed_payload.split_at(11);
        println!("before:{:?}\nafter:{:?}", before, after);
        assert_eq!(before.to_vec(), &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
        assert_eq!(after.to_vec(), &[11, 12]);
    }

    #[test]
    fn split_out_of_bounds() {
        let owner: Vec<&[u8]> = vec![&[0, 1, 2, 3], &[4, 5], &[6, 7, 8], &[9, 10, 11, 12]];

        let single_payload = OutboundChunks::Single(owner[0]);
        let (before, after) = single_payload.split_at(17);
        println!("before:{:?}\nafter:{:?}", before, after);
        assert_eq!(before.to_vec(), &[0, 1, 2, 3]);
        assert!(after.is_empty());

        let multiple_payload = OutboundChunks::new(&owner);
        let (before, after) = multiple_payload.split_at(17);
        println!("before:{:?}\nafter:{:?}", before, after);
        assert_eq!(before.to_vec(), &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]);
        assert!(after.is_empty());

        let empty_payload = OutboundChunks::new_empty();
        let (before, after) = empty_payload.split_at(17);
        println!("before:{:?}\nafter:{:?}", before, after);
        assert!(before.is_empty());
        assert!(after.is_empty());
    }

    #[test]
    fn empty_slices_mixed() {
        let owner: Vec<&[u8]> = vec![&[], &[], &[0], &[], &[1, 2], &[], &[3], &[4], &[], &[]];
        let mut borrowed_payload = OutboundChunks::new(&owner);
        let mut fragment_count = 0;
        let mut fragment;
        let expected_fragments: &[&[u8]] = &[&[0, 1], &[2, 3], &[4]];

        while !borrowed_payload.is_empty() {
            (fragment, borrowed_payload) = borrowed_payload.split_at(2);
            println!("{fragment:?}");
            assert_eq!(&expected_fragments[fragment_count], &fragment.to_vec());
            fragment_count += 1;
        }
        assert_eq!(fragment_count, expected_fragments.len());
    }

    #[test]
    fn exhaustive_splitting() {
        let owner: Vec<u8> = (0..127).collect();
        let slices = (0..7)
            .map(|i| &owner[((1 << i) - 1)..((1 << (i + 1)) - 1)])
            .collect::<Vec<_>>();
        let payload = OutboundChunks::new(&slices);

        assert_eq!(payload.to_vec(), owner);
        println!("{:#?}", payload);

        for start in 0..128 {
            for end in start..128 {
                for mid in 0..(end - start) {
                    let witness = owner[start..end].split_at(mid);
                    let split_payload = payload
                        .split_at(end)
                        .0
                        .split_at(start)
                        .1
                        .split_at(mid);
                    assert_eq!(
                        witness.0,
                        split_payload.0.to_vec(),
                        "start: {start}, mid:{mid}, end:{end}"
                    );
                    assert_eq!(
                        witness.1,
                        split_payload.1.to_vec(),
                        "start: {start}, mid:{mid}, end:{end}"
                    );
                }
            }
        }
    }
}