tokio/runtime/time/wheel/
mod.rs

1use crate::runtime::time::{TimerHandle, TimerShared};
2use crate::time::error::InsertError;
3
4mod level;
5pub(crate) use self::level::Expiration;
6use self::level::Level;
7
8use std::{array, ptr::NonNull};
9
10use super::EntryList;
11
12/// Timing wheel implementation.
13///
14/// This type provides the hashed timing wheel implementation that backs `Timer`
15/// and `DelayQueue`.
16///
17/// The structure is generic over `T: Stack`. This allows handling timeout data
18/// being stored on the heap or in a slab. In order to support the latter case,
19/// the slab must be passed into each function allowing the implementation to
20/// lookup timer entries.
21///
22/// See `Timer` documentation for some implementation notes.
23#[derive(Debug)]
24pub(crate) struct Wheel {
25    /// The number of milliseconds elapsed since the wheel started.
26    elapsed: u64,
27
28    /// Timer wheel.
29    ///
30    /// Levels:
31    ///
32    /// * 1 ms slots / 64 ms range
33    /// * 64 ms slots / ~ 4 sec range
34    /// * ~ 4 sec slots / ~ 4 min range
35    /// * ~ 4 min slots / ~ 4 hr range
36    /// * ~ 4 hr slots / ~ 12 day range
37    /// * ~ 12 day slots / ~ 2 yr range
38    levels: Box<[Level; NUM_LEVELS]>,
39
40    /// Entries queued for firing
41    pending: EntryList,
42}
43
44/// Number of levels. Each level has 64 slots. By using 6 levels with 64 slots
45/// each, the timer is able to track time up to 2 years into the future with a
46/// precision of 1 millisecond.
47const NUM_LEVELS: usize = 6;
48
49/// The maximum duration of a `Sleep`.
50pub(super) const MAX_DURATION: u64 = (1 << (6 * NUM_LEVELS)) - 1;
51
52impl Wheel {
53    /// Creates a new timing wheel.
54    pub(crate) fn new() -> Wheel {
55        Wheel {
56            elapsed: 0,
57            levels: Box::new(array::from_fn(Level::new)),
58            pending: EntryList::new(),
59        }
60    }
61
62    /// Returns the number of milliseconds that have elapsed since the timing
63    /// wheel's creation.
64    pub(crate) fn elapsed(&self) -> u64 {
65        self.elapsed
66    }
67
68    /// Inserts an entry into the timing wheel.
69    ///
70    /// # Arguments
71    ///
72    /// * `item`: The item to insert into the wheel.
73    ///
74    /// # Return
75    ///
76    /// Returns `Ok` when the item is successfully inserted, `Err` otherwise.
77    ///
78    /// `Err(Elapsed)` indicates that `when` represents an instant that has
79    /// already passed. In this case, the caller should fire the timeout
80    /// immediately.
81    ///
82    /// `Err(Invalid)` indicates an invalid `when` argument as been supplied.
83    ///
84    /// # Safety
85    ///
86    /// This function registers item into an intrusive linked list. The caller
87    /// must ensure that `item` is pinned and will not be dropped without first
88    /// being deregistered.
89    pub(crate) unsafe fn insert(
90        &mut self,
91        item: TimerHandle,
92    ) -> Result<u64, (TimerHandle, InsertError)> {
93        let when = item.sync_when();
94
95        if when <= self.elapsed {
96            return Err((item, InsertError::Elapsed));
97        }
98
99        // Get the level at which the entry should be stored
100        let level = self.level_for(when);
101
102        unsafe {
103            self.levels[level].add_entry(item);
104        }
105
106        debug_assert!({
107            self.levels[level]
108                .next_expiration(self.elapsed)
109                .map(|e| e.deadline >= self.elapsed)
110                .unwrap_or(true)
111        });
112
113        Ok(when)
114    }
115
116    /// Removes `item` from the timing wheel.
117    pub(crate) unsafe fn remove(&mut self, item: NonNull<TimerShared>) {
118        unsafe {
119            let when = item.as_ref().cached_when();
120            if when == u64::MAX {
121                self.pending.remove(item);
122            } else {
123                debug_assert!(
124                    self.elapsed <= when,
125                    "elapsed={}; when={}",
126                    self.elapsed,
127                    when
128                );
129
130                let level = self.level_for(when);
131                self.levels[level].remove_entry(item);
132            }
133        }
134    }
135
136    /// Instant at which to poll.
137    pub(crate) fn poll_at(&self) -> Option<u64> {
138        self.next_expiration().map(|expiration| expiration.deadline)
139    }
140
141    /// Advances the timer up to the instant represented by `now`.
142    pub(crate) fn poll(&mut self, now: u64) -> Option<TimerHandle> {
143        loop {
144            if let Some(handle) = self.pending.pop_back() {
145                return Some(handle);
146            }
147
148            match self.next_expiration() {
149                Some(ref expiration) if expiration.deadline <= now => {
150                    self.process_expiration(expiration);
151
152                    self.set_elapsed(expiration.deadline);
153                }
154                _ => {
155                    // in this case the poll did not indicate an expiration
156                    // _and_ we were not able to find a next expiration in
157                    // the current list of timers.  advance to the poll's
158                    // current time and do nothing else.
159                    self.set_elapsed(now);
160                    break;
161                }
162            }
163        }
164
165        self.pending.pop_back()
166    }
167
168    /// Returns the instant at which the next timeout expires.
169    fn next_expiration(&self) -> Option<Expiration> {
170        if !self.pending.is_empty() {
171            // Expire immediately as we have things pending firing
172            return Some(Expiration {
173                level: 0,
174                slot: 0,
175                deadline: self.elapsed,
176            });
177        }
178
179        // Check all levels
180        for (level_num, level) in self.levels.iter().enumerate() {
181            if let Some(expiration) = level.next_expiration(self.elapsed) {
182                // There cannot be any expirations at a higher level that happen
183                // before this one.
184                debug_assert!(self.no_expirations_before(level_num + 1, expiration.deadline));
185
186                return Some(expiration);
187            }
188        }
189
190        None
191    }
192
193    /// Returns the tick at which this timer wheel next needs to perform some
194    /// processing, or None if there are no timers registered.
195    pub(super) fn next_expiration_time(&self) -> Option<u64> {
196        self.next_expiration().map(|ex| ex.deadline)
197    }
198
199    /// Used for debug assertions
200    fn no_expirations_before(&self, start_level: usize, before: u64) -> bool {
201        let mut res = true;
202
203        for level in &self.levels[start_level..] {
204            if let Some(e2) = level.next_expiration(self.elapsed) {
205                if e2.deadline < before {
206                    res = false;
207                }
208            }
209        }
210
211        res
212    }
213
214    /// iteratively find entries that are between the wheel's current
215    /// time and the expiration time.  for each in that population either
216    /// queue it for notification (in the case of the last level) or tier
217    /// it down to the next level (in all other cases).
218    pub(crate) fn process_expiration(&mut self, expiration: &Expiration) {
219        // Note that we need to take _all_ of the entries off the list before
220        // processing any of them. This is important because it's possible that
221        // those entries might need to be reinserted into the same slot.
222        //
223        // This happens only on the highest level, when an entry is inserted
224        // more than MAX_DURATION into the future. When this happens, we wrap
225        // around, and process some entries a multiple of MAX_DURATION before
226        // they actually need to be dropped down a level. We then reinsert them
227        // back into the same position; we must make sure we don't then process
228        // those entries again or we'll end up in an infinite loop.
229        let mut entries = self.take_entries(expiration);
230
231        while let Some(item) = entries.pop_back() {
232            if expiration.level == 0 {
233                debug_assert_eq!(unsafe { item.cached_when() }, expiration.deadline);
234            }
235
236            // Try to expire the entry; this is cheap (doesn't synchronize) if
237            // the timer is not expired, and updates cached_when.
238            match unsafe { item.mark_pending(expiration.deadline) } {
239                Ok(()) => {
240                    // Item was expired
241                    self.pending.push_front(item);
242                }
243                Err(expiration_tick) => {
244                    let level = level_for(expiration.deadline, expiration_tick);
245                    unsafe {
246                        self.levels[level].add_entry(item);
247                    }
248                }
249            }
250        }
251    }
252
253    fn set_elapsed(&mut self, when: u64) {
254        assert!(
255            self.elapsed <= when,
256            "elapsed={:?}; when={:?}",
257            self.elapsed,
258            when
259        );
260
261        if when > self.elapsed {
262            self.elapsed = when;
263        }
264    }
265
266    /// Obtains the list of entries that need processing for the given expiration.
267    fn take_entries(&mut self, expiration: &Expiration) -> EntryList {
268        self.levels[expiration.level].take_slot(expiration.slot)
269    }
270
271    fn level_for(&self, when: u64) -> usize {
272        level_for(self.elapsed, when)
273    }
274}
275
276fn level_for(elapsed: u64, when: u64) -> usize {
277    const SLOT_MASK: u64 = (1 << 6) - 1;
278
279    // Mask in the trailing bits ignored by the level calculation in order to cap
280    // the possible leading zeros
281    let mut masked = elapsed ^ when | SLOT_MASK;
282
283    if masked >= MAX_DURATION {
284        // Fudge the timer into the top level
285        masked = MAX_DURATION - 1;
286    }
287
288    let leading_zeros = masked.leading_zeros() as usize;
289    let significant = 63 - leading_zeros;
290
291    significant / NUM_LEVELS
292}
293
294#[cfg(all(test, not(loom)))]
295mod test {
296    use super::*;
297
298    #[test]
299    fn test_level_for() {
300        for pos in 0..64 {
301            assert_eq!(0, level_for(0, pos), "level_for({pos}) -- binary = {pos:b}");
302        }
303
304        for level in 1..5 {
305            for pos in level..64 {
306                let a = pos * 64_usize.pow(level as u32);
307                assert_eq!(
308                    level,
309                    level_for(0, a as u64),
310                    "level_for({a}) -- binary = {a:b}"
311                );
312
313                if pos > level {
314                    let a = a - 1;
315                    assert_eq!(
316                        level,
317                        level_for(0, a as u64),
318                        "level_for({a}) -- binary = {a:b}"
319                    );
320                }
321
322                if pos < 64 {
323                    let a = a + 1;
324                    assert_eq!(
325                        level,
326                        level_for(0, a as u64),
327                        "level_for({a}) -- binary = {a:b}"
328                    );
329                }
330            }
331        }
332    }
333}