libm/math/log1p.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
/* origin: FreeBSD /usr/src/lib/msun/src/s_log1p.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* double log1p(double x)
* Return the natural logarithm of 1+x.
*
* Method :
* 1. Argument Reduction: find k and f such that
* 1+x = 2^k * (1+f),
* where sqrt(2)/2 < 1+f < sqrt(2) .
*
* Note. If k=0, then f=x is exact. However, if k!=0, then f
* may not be representable exactly. In that case, a correction
* term is need. Let u=1+x rounded. Let c = (1+x)-u, then
* log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
* and add back the correction term c/u.
* (Note: when x > 2**53, one can simply return log(x))
*
* 2. Approximation of log(1+f): See log.c
*
* 3. Finally, log1p(x) = k*ln2 + log(1+f) + c/u. See log.c
*
* Special cases:
* log1p(x) is NaN with signal if x < -1 (including -INF) ;
* log1p(+INF) is +INF; log1p(-1) is -INF with signal;
* log1p(NaN) is that NaN with no signal.
*
* Accuracy:
* according to an error analysis, the error is always less than
* 1 ulp (unit in the last place).
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*
* Note: Assuming log() return accurate answer, the following
* algorithm can be used to compute log1p(x) to within a few ULP:
*
* u = 1+x;
* if(u==1.0) return x ; else
* return log(u)*(x/(u-1.0));
*
* See HP-15C Advanced Functions Handbook, p.193.
*/
use core::f64;
const LN2_HI: f64 = 6.93147180369123816490e-01; /* 3fe62e42 fee00000 */
const LN2_LO: f64 = 1.90821492927058770002e-10; /* 3dea39ef 35793c76 */
const LG1: f64 = 6.666666666666735130e-01; /* 3FE55555 55555593 */
const LG2: f64 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */
const LG3: f64 = 2.857142874366239149e-01; /* 3FD24924 94229359 */
const LG4: f64 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */
const LG5: f64 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */
const LG6: f64 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */
const LG7: f64 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
/// The natural logarithm of 1+`x` (f64).
#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
pub fn log1p(x: f64) -> f64 {
let mut ui: u64 = x.to_bits();
let hfsq: f64;
let mut f: f64 = 0.;
let mut c: f64 = 0.;
let s: f64;
let z: f64;
let r: f64;
let w: f64;
let t1: f64;
let t2: f64;
let dk: f64;
let hx: u32;
let mut hu: u32;
let mut k: i32;
hx = (ui >> 32) as u32;
k = 1;
if hx < 0x3fda827a || (hx >> 31) > 0 {
/* 1+x < sqrt(2)+ */
if hx >= 0xbff00000 {
/* x <= -1.0 */
if x == -1. {
return x / 0.0; /* log1p(-1) = -inf */
}
return (x - x) / 0.0; /* log1p(x<-1) = NaN */
}
if hx << 1 < 0x3ca00000 << 1 {
/* |x| < 2**-53 */
/* underflow if subnormal */
if (hx & 0x7ff00000) == 0 {
force_eval!(x as f32);
}
return x;
}
if hx <= 0xbfd2bec4 {
/* sqrt(2)/2- <= 1+x < sqrt(2)+ */
k = 0;
c = 0.;
f = x;
}
} else if hx >= 0x7ff00000 {
return x;
}
if k > 0 {
ui = (1. + x).to_bits();
hu = (ui >> 32) as u32;
hu += 0x3ff00000 - 0x3fe6a09e;
k = (hu >> 20) as i32 - 0x3ff;
/* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
if k < 54 {
c = if k >= 2 { 1. - (f64::from_bits(ui) - x) } else { x - (f64::from_bits(ui) - 1.) };
c /= f64::from_bits(ui);
} else {
c = 0.;
}
/* reduce u into [sqrt(2)/2, sqrt(2)] */
hu = (hu & 0x000fffff) + 0x3fe6a09e;
ui = (hu as u64) << 32 | (ui & 0xffffffff);
f = f64::from_bits(ui) - 1.;
}
hfsq = 0.5 * f * f;
s = f / (2.0 + f);
z = s * s;
w = z * z;
t1 = w * (LG2 + w * (LG4 + w * LG6));
t2 = z * (LG1 + w * (LG3 + w * (LG5 + w * LG7)));
r = t2 + t1;
dk = k as f64;
s * (hfsq + r) + (dk * LN2_LO + c) - hfsq + f + dk * LN2_HI
}