tokio/runtime/scheduler/multi_thread/worker.rs
1//! A scheduler is initialized with a fixed number of workers. Each worker is
2//! driven by a thread. Each worker has a "core" which contains data such as the
3//! run queue and other state. When `block_in_place` is called, the worker's
4//! "core" is handed off to a new thread allowing the scheduler to continue to
5//! make progress while the originating thread blocks.
6//!
7//! # Shutdown
8//!
9//! Shutting down the runtime involves the following steps:
10//!
11//! 1. The Shared::close method is called. This closes the inject queue and
12//! `OwnedTasks` instance and wakes up all worker threads.
13//!
14//! 2. Each worker thread observes the close signal next time it runs
15//! Core::maintenance by checking whether the inject queue is closed.
16//! The `Core::is_shutdown` flag is set to true.
17//!
18//! 3. The worker thread calls `pre_shutdown` in parallel. Here, the worker
19//! will keep removing tasks from `OwnedTasks` until it is empty. No new
20//! tasks can be pushed to the `OwnedTasks` during or after this step as it
21//! was closed in step 1.
22//!
23//! 5. The workers call Shared::shutdown to enter the single-threaded phase of
24//! shutdown. These calls will push their core to `Shared::shutdown_cores`,
25//! and the last thread to push its core will finish the shutdown procedure.
26//!
27//! 6. The local run queue of each core is emptied, then the inject queue is
28//! emptied.
29//!
30//! At this point, shutdown has completed. It is not possible for any of the
31//! collections to contain any tasks at this point, as each collection was
32//! closed first, then emptied afterwards.
33//!
34//! ## Spawns during shutdown
35//!
36//! When spawning tasks during shutdown, there are two cases:
37//!
38//! * The spawner observes the `OwnedTasks` being open, and the inject queue is
39//! closed.
40//! * The spawner observes the `OwnedTasks` being closed and doesn't check the
41//! inject queue.
42//!
43//! The first case can only happen if the `OwnedTasks::bind` call happens before
44//! or during step 1 of shutdown. In this case, the runtime will clean up the
45//! task in step 3 of shutdown.
46//!
47//! In the latter case, the task was not spawned and the task is immediately
48//! cancelled by the spawner.
49//!
50//! The correctness of shutdown requires both the inject queue and `OwnedTasks`
51//! collection to have a closed bit. With a close bit on only the inject queue,
52//! spawning could run in to a situation where a task is successfully bound long
53//! after the runtime has shut down. With a close bit on only the `OwnedTasks`,
54//! the first spawning situation could result in the notification being pushed
55//! to the inject queue after step 6 of shutdown, which would leave a task in
56//! the inject queue indefinitely. This would be a ref-count cycle and a memory
57//! leak.
58
59use crate::loom::sync::{Arc, Mutex};
60use crate::runtime;
61use crate::runtime::scheduler::multi_thread::{
62 idle, queue, Counters, Handle, Idle, Overflow, Parker, Stats, TraceStatus, Unparker,
63};
64use crate::runtime::scheduler::{inject, Defer, Lock};
65use crate::runtime::task::OwnedTasks;
66use crate::runtime::{blocking, driver, scheduler, task, Config, SchedulerMetrics, WorkerMetrics};
67use crate::runtime::{context, TaskHooks};
68use crate::task::coop;
69use crate::util::atomic_cell::AtomicCell;
70use crate::util::rand::{FastRand, RngSeedGenerator};
71
72use std::cell::RefCell;
73use std::task::Waker;
74use std::thread;
75use std::time::Duration;
76
77mod metrics;
78
79cfg_taskdump! {
80 mod taskdump;
81}
82
83cfg_not_taskdump! {
84 mod taskdump_mock;
85}
86
87/// A scheduler worker
88pub(super) struct Worker {
89 /// Reference to scheduler's handle
90 handle: Arc<Handle>,
91
92 /// Index holding this worker's remote state
93 index: usize,
94
95 /// Used to hand-off a worker's core to another thread.
96 core: AtomicCell<Core>,
97}
98
99/// Core data
100struct Core {
101 /// Used to schedule bookkeeping tasks every so often.
102 tick: u32,
103
104 /// When a task is scheduled from a worker, it is stored in this slot. The
105 /// worker will check this slot for a task **before** checking the run
106 /// queue. This effectively results in the **last** scheduled task to be run
107 /// next (LIFO). This is an optimization for improving locality which
108 /// benefits message passing patterns and helps to reduce latency.
109 lifo_slot: Option<Notified>,
110
111 /// When `true`, locally scheduled tasks go to the LIFO slot. When `false`,
112 /// they go to the back of the `run_queue`.
113 lifo_enabled: bool,
114
115 /// The worker-local run queue.
116 run_queue: queue::Local<Arc<Handle>>,
117
118 /// True if the worker is currently searching for more work. Searching
119 /// involves attempting to steal from other workers.
120 is_searching: bool,
121
122 /// True if the scheduler is being shutdown
123 is_shutdown: bool,
124
125 /// True if the scheduler is being traced
126 is_traced: bool,
127
128 /// Parker
129 ///
130 /// Stored in an `Option` as the parker is added / removed to make the
131 /// borrow checker happy.
132 park: Option<Parker>,
133
134 /// Per-worker runtime stats
135 stats: Stats,
136
137 /// How often to check the global queue
138 global_queue_interval: u32,
139
140 /// Fast random number generator.
141 rand: FastRand,
142}
143
144/// State shared across all workers
145pub(crate) struct Shared {
146 /// Per-worker remote state. All other workers have access to this and is
147 /// how they communicate between each other.
148 remotes: Box<[Remote]>,
149
150 /// Global task queue used for:
151 /// 1. Submit work to the scheduler while **not** currently on a worker thread.
152 /// 2. Submit work to the scheduler when a worker run queue is saturated
153 pub(super) inject: inject::Shared<Arc<Handle>>,
154
155 /// Coordinates idle workers
156 idle: Idle,
157
158 /// Collection of all active tasks spawned onto this executor.
159 pub(crate) owned: OwnedTasks<Arc<Handle>>,
160
161 /// Data synchronized by the scheduler mutex
162 pub(super) synced: Mutex<Synced>,
163
164 /// Cores that have observed the shutdown signal
165 ///
166 /// The core is **not** placed back in the worker to avoid it from being
167 /// stolen by a thread that was spawned as part of `block_in_place`.
168 #[allow(clippy::vec_box)] // we're moving an already-boxed value
169 shutdown_cores: Mutex<Vec<Box<Core>>>,
170
171 /// The number of cores that have observed the trace signal.
172 pub(super) trace_status: TraceStatus,
173
174 /// Scheduler configuration options
175 config: Config,
176
177 /// Collects metrics from the runtime.
178 pub(super) scheduler_metrics: SchedulerMetrics,
179
180 pub(super) worker_metrics: Box<[WorkerMetrics]>,
181
182 /// Only held to trigger some code on drop. This is used to get internal
183 /// runtime metrics that can be useful when doing performance
184 /// investigations. This does nothing (empty struct, no drop impl) unless
185 /// the `tokio_internal_mt_counters` `cfg` flag is set.
186 _counters: Counters,
187}
188
189/// Data synchronized by the scheduler mutex
190pub(crate) struct Synced {
191 /// Synchronized state for `Idle`.
192 pub(super) idle: idle::Synced,
193
194 /// Synchronized state for `Inject`.
195 pub(crate) inject: inject::Synced,
196}
197
198/// Used to communicate with a worker from other threads.
199struct Remote {
200 /// Steals tasks from this worker.
201 pub(super) steal: queue::Steal<Arc<Handle>>,
202
203 /// Unparks the associated worker thread
204 unpark: Unparker,
205}
206
207/// Thread-local context
208pub(crate) struct Context {
209 /// Worker
210 worker: Arc<Worker>,
211
212 /// Core data
213 core: RefCell<Option<Box<Core>>>,
214
215 /// Tasks to wake after resource drivers are polled. This is mostly to
216 /// handle yielded tasks.
217 pub(crate) defer: Defer,
218}
219
220/// Starts the workers
221pub(crate) struct Launch(Vec<Arc<Worker>>);
222
223/// Running a task may consume the core. If the core is still available when
224/// running the task completes, it is returned. Otherwise, the worker will need
225/// to stop processing.
226type RunResult = Result<Box<Core>, ()>;
227
228/// A notified task handle
229type Notified = task::Notified<Arc<Handle>>;
230
231/// Value picked out of thin-air. Running the LIFO slot a handful of times
232/// seems sufficient to benefit from locality. More than 3 times probably is
233/// overweighing. The value can be tuned in the future with data that shows
234/// improvements.
235const MAX_LIFO_POLLS_PER_TICK: usize = 3;
236
237pub(super) fn create(
238 size: usize,
239 park: Parker,
240 driver_handle: driver::Handle,
241 blocking_spawner: blocking::Spawner,
242 seed_generator: RngSeedGenerator,
243 config: Config,
244) -> (Arc<Handle>, Launch) {
245 let mut cores = Vec::with_capacity(size);
246 let mut remotes = Vec::with_capacity(size);
247 let mut worker_metrics = Vec::with_capacity(size);
248
249 // Create the local queues
250 for _ in 0..size {
251 let (steal, run_queue) = queue::local();
252
253 let park = park.clone();
254 let unpark = park.unpark();
255 let metrics = WorkerMetrics::from_config(&config);
256 let stats = Stats::new(&metrics);
257
258 cores.push(Box::new(Core {
259 tick: 0,
260 lifo_slot: None,
261 lifo_enabled: !config.disable_lifo_slot,
262 run_queue,
263 is_searching: false,
264 is_shutdown: false,
265 is_traced: false,
266 park: Some(park),
267 global_queue_interval: stats.tuned_global_queue_interval(&config),
268 stats,
269 rand: FastRand::from_seed(config.seed_generator.next_seed()),
270 }));
271
272 remotes.push(Remote { steal, unpark });
273 worker_metrics.push(metrics);
274 }
275
276 let (idle, idle_synced) = Idle::new(size);
277 let (inject, inject_synced) = inject::Shared::new();
278
279 let remotes_len = remotes.len();
280 let handle = Arc::new(Handle {
281 task_hooks: TaskHooks::from_config(&config),
282 shared: Shared {
283 remotes: remotes.into_boxed_slice(),
284 inject,
285 idle,
286 owned: OwnedTasks::new(size),
287 synced: Mutex::new(Synced {
288 idle: idle_synced,
289 inject: inject_synced,
290 }),
291 shutdown_cores: Mutex::new(vec![]),
292 trace_status: TraceStatus::new(remotes_len),
293 config,
294 scheduler_metrics: SchedulerMetrics::new(),
295 worker_metrics: worker_metrics.into_boxed_slice(),
296 _counters: Counters,
297 },
298 driver: driver_handle,
299 blocking_spawner,
300 seed_generator,
301 });
302
303 let mut launch = Launch(vec![]);
304
305 for (index, core) in cores.drain(..).enumerate() {
306 launch.0.push(Arc::new(Worker {
307 handle: handle.clone(),
308 index,
309 core: AtomicCell::new(Some(core)),
310 }));
311 }
312
313 (handle, launch)
314}
315
316#[track_caller]
317pub(crate) fn block_in_place<F, R>(f: F) -> R
318where
319 F: FnOnce() -> R,
320{
321 // Try to steal the worker core back
322 struct Reset {
323 take_core: bool,
324 budget: coop::Budget,
325 }
326
327 impl Drop for Reset {
328 fn drop(&mut self) {
329 with_current(|maybe_cx| {
330 if let Some(cx) = maybe_cx {
331 if self.take_core {
332 let core = cx.worker.core.take();
333
334 if core.is_some() {
335 cx.worker.handle.shared.worker_metrics[cx.worker.index]
336 .set_thread_id(thread::current().id());
337 }
338
339 let mut cx_core = cx.core.borrow_mut();
340 assert!(cx_core.is_none());
341 *cx_core = core;
342 }
343
344 // Reset the task budget as we are re-entering the
345 // runtime.
346 coop::set(self.budget);
347 }
348 });
349 }
350 }
351
352 let mut had_entered = false;
353 let mut take_core = false;
354
355 let setup_result = with_current(|maybe_cx| {
356 match (
357 crate::runtime::context::current_enter_context(),
358 maybe_cx.is_some(),
359 ) {
360 (context::EnterRuntime::Entered { .. }, true) => {
361 // We are on a thread pool runtime thread, so we just need to
362 // set up blocking.
363 had_entered = true;
364 }
365 (
366 context::EnterRuntime::Entered {
367 allow_block_in_place,
368 },
369 false,
370 ) => {
371 // We are on an executor, but _not_ on the thread pool. That is
372 // _only_ okay if we are in a thread pool runtime's block_on
373 // method:
374 if allow_block_in_place {
375 had_entered = true;
376 return Ok(());
377 } else {
378 // This probably means we are on the current_thread runtime or in a
379 // LocalSet, where it is _not_ okay to block.
380 return Err(
381 "can call blocking only when running on the multi-threaded runtime",
382 );
383 }
384 }
385 (context::EnterRuntime::NotEntered, true) => {
386 // This is a nested call to block_in_place (we already exited).
387 // All the necessary setup has already been done.
388 return Ok(());
389 }
390 (context::EnterRuntime::NotEntered, false) => {
391 // We are outside of the tokio runtime, so blocking is fine.
392 // We can also skip all of the thread pool blocking setup steps.
393 return Ok(());
394 }
395 }
396
397 let cx = maybe_cx.expect("no .is_some() == false cases above should lead here");
398
399 // Get the worker core. If none is set, then blocking is fine!
400 let mut core = match cx.core.borrow_mut().take() {
401 Some(core) => core,
402 None => return Ok(()),
403 };
404
405 // If we heavily call `spawn_blocking`, there might be no available thread to
406 // run this core. Except for the task in the lifo_slot, all tasks can be
407 // stolen, so we move the task out of the lifo_slot to the run_queue.
408 if let Some(task) = core.lifo_slot.take() {
409 core.run_queue
410 .push_back_or_overflow(task, &*cx.worker.handle, &mut core.stats);
411 }
412
413 // We are taking the core from the context and sending it to another
414 // thread.
415 take_core = true;
416
417 // The parker should be set here
418 assert!(core.park.is_some());
419
420 // In order to block, the core must be sent to another thread for
421 // execution.
422 //
423 // First, move the core back into the worker's shared core slot.
424 cx.worker.core.set(core);
425
426 // Next, clone the worker handle and send it to a new thread for
427 // processing.
428 //
429 // Once the blocking task is done executing, we will attempt to
430 // steal the core back.
431 let worker = cx.worker.clone();
432 runtime::spawn_blocking(move || run(worker));
433 Ok(())
434 });
435
436 if let Err(panic_message) = setup_result {
437 panic!("{}", panic_message);
438 }
439
440 if had_entered {
441 // Unset the current task's budget. Blocking sections are not
442 // constrained by task budgets.
443 let _reset = Reset {
444 take_core,
445 budget: coop::stop(),
446 };
447
448 crate::runtime::context::exit_runtime(f)
449 } else {
450 f()
451 }
452}
453
454impl Launch {
455 pub(crate) fn launch(mut self) {
456 for worker in self.0.drain(..) {
457 runtime::spawn_blocking(move || run(worker));
458 }
459 }
460}
461
462fn run(worker: Arc<Worker>) {
463 #[allow(dead_code)]
464 struct AbortOnPanic;
465
466 impl Drop for AbortOnPanic {
467 fn drop(&mut self) {
468 if std::thread::panicking() {
469 eprintln!("worker thread panicking; aborting process");
470 std::process::abort();
471 }
472 }
473 }
474
475 // Catching panics on worker threads in tests is quite tricky. Instead, when
476 // debug assertions are enabled, we just abort the process.
477 #[cfg(debug_assertions)]
478 let _abort_on_panic = AbortOnPanic;
479
480 // Acquire a core. If this fails, then another thread is running this
481 // worker and there is nothing further to do.
482 let core = match worker.core.take() {
483 Some(core) => core,
484 None => return,
485 };
486
487 worker.handle.shared.worker_metrics[worker.index].set_thread_id(thread::current().id());
488
489 let handle = scheduler::Handle::MultiThread(worker.handle.clone());
490
491 crate::runtime::context::enter_runtime(&handle, true, |_| {
492 // Set the worker context.
493 let cx = scheduler::Context::MultiThread(Context {
494 worker,
495 core: RefCell::new(None),
496 defer: Defer::new(),
497 });
498
499 context::set_scheduler(&cx, || {
500 let cx = cx.expect_multi_thread();
501
502 // This should always be an error. It only returns a `Result` to support
503 // using `?` to short circuit.
504 assert!(cx.run(core).is_err());
505
506 // Check if there are any deferred tasks to notify. This can happen when
507 // the worker core is lost due to `block_in_place()` being called from
508 // within the task.
509 cx.defer.wake();
510 });
511 });
512}
513
514impl Context {
515 fn run(&self, mut core: Box<Core>) -> RunResult {
516 // Reset `lifo_enabled` here in case the core was previously stolen from
517 // a task that had the LIFO slot disabled.
518 self.reset_lifo_enabled(&mut core);
519
520 // Start as "processing" tasks as polling tasks from the local queue
521 // will be one of the first things we do.
522 core.stats.start_processing_scheduled_tasks();
523
524 while !core.is_shutdown {
525 self.assert_lifo_enabled_is_correct(&core);
526
527 if core.is_traced {
528 core = self.worker.handle.trace_core(core);
529 }
530
531 // Increment the tick
532 core.tick();
533
534 // Run maintenance, if needed
535 core = self.maintenance(core);
536
537 // First, check work available to the current worker.
538 if let Some(task) = core.next_task(&self.worker) {
539 core = self.run_task(task, core)?;
540 continue;
541 }
542
543 // We consumed all work in the queues and will start searching for work.
544 core.stats.end_processing_scheduled_tasks();
545
546 // There is no more **local** work to process, try to steal work
547 // from other workers.
548 if let Some(task) = core.steal_work(&self.worker) {
549 // Found work, switch back to processing
550 core.stats.start_processing_scheduled_tasks();
551 core = self.run_task(task, core)?;
552 } else {
553 // Wait for work
554 core = if !self.defer.is_empty() {
555 self.park_timeout(core, Some(Duration::from_millis(0)))
556 } else {
557 self.park(core)
558 };
559 core.stats.start_processing_scheduled_tasks();
560 }
561 }
562
563 core.pre_shutdown(&self.worker);
564 // Signal shutdown
565 self.worker.handle.shutdown_core(core);
566 Err(())
567 }
568
569 fn run_task(&self, task: Notified, mut core: Box<Core>) -> RunResult {
570 #[cfg(tokio_unstable)]
571 let task_meta = task.task_meta();
572
573 let task = self.worker.handle.shared.owned.assert_owner(task);
574
575 // Make sure the worker is not in the **searching** state. This enables
576 // another idle worker to try to steal work.
577 core.transition_from_searching(&self.worker);
578
579 self.assert_lifo_enabled_is_correct(&core);
580
581 // Measure the poll start time. Note that we may end up polling other
582 // tasks under this measurement. In this case, the tasks came from the
583 // LIFO slot and are considered part of the current task for scheduling
584 // purposes. These tasks inherent the "parent"'s limits.
585 core.stats.start_poll();
586
587 // Make the core available to the runtime context
588 *self.core.borrow_mut() = Some(core);
589
590 // Run the task
591 coop::budget(|| {
592 // Unlike the poll time above, poll start callback is attached to the task id,
593 // so it is tightly associated with the actual poll invocation.
594 #[cfg(tokio_unstable)]
595 self.worker
596 .handle
597 .task_hooks
598 .poll_start_callback(&task_meta);
599
600 task.run();
601
602 #[cfg(tokio_unstable)]
603 self.worker.handle.task_hooks.poll_stop_callback(&task_meta);
604
605 let mut lifo_polls = 0;
606
607 // As long as there is budget remaining and a task exists in the
608 // `lifo_slot`, then keep running.
609 loop {
610 // Check if we still have the core. If not, the core was stolen
611 // by another worker.
612 let mut core = match self.core.borrow_mut().take() {
613 Some(core) => core,
614 None => {
615 // In this case, we cannot call `reset_lifo_enabled()`
616 // because the core was stolen. The stealer will handle
617 // that at the top of `Context::run`
618 return Err(());
619 }
620 };
621
622 // Check for a task in the LIFO slot
623 let task = match core.lifo_slot.take() {
624 Some(task) => task,
625 None => {
626 self.reset_lifo_enabled(&mut core);
627 core.stats.end_poll();
628 return Ok(core);
629 }
630 };
631
632 if !coop::has_budget_remaining() {
633 core.stats.end_poll();
634
635 // Not enough budget left to run the LIFO task, push it to
636 // the back of the queue and return.
637 core.run_queue.push_back_or_overflow(
638 task,
639 &*self.worker.handle,
640 &mut core.stats,
641 );
642 // If we hit this point, the LIFO slot should be enabled.
643 // There is no need to reset it.
644 debug_assert!(core.lifo_enabled);
645 return Ok(core);
646 }
647
648 // Track that we are about to run a task from the LIFO slot.
649 lifo_polls += 1;
650 super::counters::inc_lifo_schedules();
651
652 // Disable the LIFO slot if we reach our limit
653 //
654 // In ping-ping style workloads where task A notifies task B,
655 // which notifies task A again, continuously prioritizing the
656 // LIFO slot can cause starvation as these two tasks will
657 // repeatedly schedule the other. To mitigate this, we limit the
658 // number of times the LIFO slot is prioritized.
659 if lifo_polls >= MAX_LIFO_POLLS_PER_TICK {
660 core.lifo_enabled = false;
661 super::counters::inc_lifo_capped();
662 }
663
664 // Run the LIFO task, then loop
665 *self.core.borrow_mut() = Some(core);
666 let task = self.worker.handle.shared.owned.assert_owner(task);
667
668 #[cfg(tokio_unstable)]
669 let task_meta = task.task_meta();
670
671 #[cfg(tokio_unstable)]
672 self.worker
673 .handle
674 .task_hooks
675 .poll_start_callback(&task_meta);
676
677 task.run();
678
679 #[cfg(tokio_unstable)]
680 self.worker.handle.task_hooks.poll_stop_callback(&task_meta);
681 }
682 })
683 }
684
685 fn reset_lifo_enabled(&self, core: &mut Core) {
686 core.lifo_enabled = !self.worker.handle.shared.config.disable_lifo_slot;
687 }
688
689 fn assert_lifo_enabled_is_correct(&self, core: &Core) {
690 debug_assert_eq!(
691 core.lifo_enabled,
692 !self.worker.handle.shared.config.disable_lifo_slot
693 );
694 }
695
696 fn maintenance(&self, mut core: Box<Core>) -> Box<Core> {
697 if core.tick % self.worker.handle.shared.config.event_interval == 0 {
698 super::counters::inc_num_maintenance();
699
700 core.stats.end_processing_scheduled_tasks();
701
702 // Call `park` with a 0 timeout. This enables the I/O driver, timer, ...
703 // to run without actually putting the thread to sleep.
704 core = self.park_timeout(core, Some(Duration::from_millis(0)));
705
706 // Run regularly scheduled maintenance
707 core.maintenance(&self.worker);
708
709 core.stats.start_processing_scheduled_tasks();
710 }
711
712 core
713 }
714
715 /// Parks the worker thread while waiting for tasks to execute.
716 ///
717 /// This function checks if indeed there's no more work left to be done before parking.
718 /// Also important to notice that, before parking, the worker thread will try to take
719 /// ownership of the Driver (IO/Time) and dispatch any events that might have fired.
720 /// Whenever a worker thread executes the Driver loop, all waken tasks are scheduled
721 /// in its own local queue until the queue saturates (ntasks > `LOCAL_QUEUE_CAPACITY`).
722 /// When the local queue is saturated, the overflow tasks are added to the injection queue
723 /// from where other workers can pick them up.
724 /// Also, we rely on the workstealing algorithm to spread the tasks amongst workers
725 /// after all the IOs get dispatched
726 fn park(&self, mut core: Box<Core>) -> Box<Core> {
727 if let Some(f) = &self.worker.handle.shared.config.before_park {
728 f();
729 }
730
731 if core.transition_to_parked(&self.worker) {
732 while !core.is_shutdown && !core.is_traced {
733 core.stats.about_to_park();
734 core.stats
735 .submit(&self.worker.handle.shared.worker_metrics[self.worker.index]);
736
737 core = self.park_timeout(core, None);
738
739 core.stats.unparked();
740
741 // Run regularly scheduled maintenance
742 core.maintenance(&self.worker);
743
744 if core.transition_from_parked(&self.worker) {
745 break;
746 }
747 }
748 }
749
750 if let Some(f) = &self.worker.handle.shared.config.after_unpark {
751 f();
752 }
753 core
754 }
755
756 fn park_timeout(&self, mut core: Box<Core>, duration: Option<Duration>) -> Box<Core> {
757 self.assert_lifo_enabled_is_correct(&core);
758
759 // Take the parker out of core
760 let mut park = core.park.take().expect("park missing");
761
762 // Store `core` in context
763 *self.core.borrow_mut() = Some(core);
764
765 // Park thread
766 if let Some(timeout) = duration {
767 park.park_timeout(&self.worker.handle.driver, timeout);
768 } else {
769 park.park(&self.worker.handle.driver);
770 }
771
772 self.defer.wake();
773
774 // Remove `core` from context
775 core = self.core.borrow_mut().take().expect("core missing");
776
777 // Place `park` back in `core`
778 core.park = Some(park);
779
780 if core.should_notify_others() {
781 self.worker.handle.notify_parked_local();
782 }
783
784 core
785 }
786
787 pub(crate) fn defer(&self, waker: &Waker) {
788 if self.core.borrow().is_none() {
789 // If there is no core, then the worker is currently in a block_in_place. In this case,
790 // we cannot use the defer queue as we aren't really in the current runtime.
791 waker.wake_by_ref();
792 } else {
793 self.defer.defer(waker);
794 }
795 }
796}
797
798impl Core {
799 /// Increment the tick
800 fn tick(&mut self) {
801 self.tick = self.tick.wrapping_add(1);
802 }
803
804 /// Return the next notified task available to this worker.
805 fn next_task(&mut self, worker: &Worker) -> Option<Notified> {
806 if self.tick % self.global_queue_interval == 0 {
807 // Update the global queue interval, if needed
808 self.tune_global_queue_interval(worker);
809
810 worker
811 .handle
812 .next_remote_task()
813 .or_else(|| self.next_local_task())
814 } else {
815 let maybe_task = self.next_local_task();
816
817 if maybe_task.is_some() {
818 return maybe_task;
819 }
820
821 if worker.inject().is_empty() {
822 return None;
823 }
824
825 // Other threads can only **remove** tasks from the current worker's
826 // `run_queue`. So, we can be confident that by the time we call
827 // `run_queue.push_back` below, there will be *at least* `cap`
828 // available slots in the queue.
829 let cap = usize::min(
830 self.run_queue.remaining_slots(),
831 self.run_queue.max_capacity() / 2,
832 );
833
834 // The worker is currently idle, pull a batch of work from the
835 // injection queue. We don't want to pull *all* the work so other
836 // workers can also get some.
837 let n = usize::min(
838 worker.inject().len() / worker.handle.shared.remotes.len() + 1,
839 cap,
840 );
841
842 // Take at least one task since the first task is returned directly
843 // and not pushed onto the local queue.
844 let n = usize::max(1, n);
845
846 let mut synced = worker.handle.shared.synced.lock();
847 // safety: passing in the correct `inject::Synced`.
848 let mut tasks = unsafe { worker.inject().pop_n(&mut synced.inject, n) };
849
850 // Pop the first task to return immediately
851 let ret = tasks.next();
852
853 // Push the rest of the on the run queue
854 self.run_queue.push_back(tasks);
855
856 ret
857 }
858 }
859
860 fn next_local_task(&mut self) -> Option<Notified> {
861 self.lifo_slot.take().or_else(|| self.run_queue.pop())
862 }
863
864 /// Function responsible for stealing tasks from another worker
865 ///
866 /// Note: Only if less than half the workers are searching for tasks to steal
867 /// a new worker will actually try to steal. The idea is to make sure not all
868 /// workers will be trying to steal at the same time.
869 fn steal_work(&mut self, worker: &Worker) -> Option<Notified> {
870 if !self.transition_to_searching(worker) {
871 return None;
872 }
873
874 let num = worker.handle.shared.remotes.len();
875 // Start from a random worker
876 let start = self.rand.fastrand_n(num as u32) as usize;
877
878 for i in 0..num {
879 let i = (start + i) % num;
880
881 // Don't steal from ourself! We know we don't have work.
882 if i == worker.index {
883 continue;
884 }
885
886 let target = &worker.handle.shared.remotes[i];
887 if let Some(task) = target
888 .steal
889 .steal_into(&mut self.run_queue, &mut self.stats)
890 {
891 return Some(task);
892 }
893 }
894
895 // Fallback on checking the global queue
896 worker.handle.next_remote_task()
897 }
898
899 fn transition_to_searching(&mut self, worker: &Worker) -> bool {
900 if !self.is_searching {
901 self.is_searching = worker.handle.shared.idle.transition_worker_to_searching();
902 }
903
904 self.is_searching
905 }
906
907 fn transition_from_searching(&mut self, worker: &Worker) {
908 if !self.is_searching {
909 return;
910 }
911
912 self.is_searching = false;
913 worker.handle.transition_worker_from_searching();
914 }
915
916 fn has_tasks(&self) -> bool {
917 self.lifo_slot.is_some() || self.run_queue.has_tasks()
918 }
919
920 fn should_notify_others(&self) -> bool {
921 // If there are tasks available to steal, but this worker is not
922 // looking for tasks to steal, notify another worker.
923 if self.is_searching {
924 return false;
925 }
926 self.lifo_slot.is_some() as usize + self.run_queue.len() > 1
927 }
928
929 /// Prepares the worker state for parking.
930 ///
931 /// Returns true if the transition happened, false if there is work to do first.
932 fn transition_to_parked(&mut self, worker: &Worker) -> bool {
933 // Workers should not park if they have work to do
934 if self.has_tasks() || self.is_traced {
935 return false;
936 }
937
938 // When the final worker transitions **out** of searching to parked, it
939 // must check all the queues one last time in case work materialized
940 // between the last work scan and transitioning out of searching.
941 let is_last_searcher = worker.handle.shared.idle.transition_worker_to_parked(
942 &worker.handle.shared,
943 worker.index,
944 self.is_searching,
945 );
946
947 // The worker is no longer searching. Setting this is the local cache
948 // only.
949 self.is_searching = false;
950
951 if is_last_searcher {
952 worker.handle.notify_if_work_pending();
953 }
954
955 true
956 }
957
958 /// Returns `true` if the transition happened.
959 fn transition_from_parked(&mut self, worker: &Worker) -> bool {
960 // If a task is in the lifo slot/run queue, then we must unpark regardless of
961 // being notified
962 if self.has_tasks() {
963 // When a worker wakes, it should only transition to the "searching"
964 // state when the wake originates from another worker *or* a new task
965 // is pushed. We do *not* want the worker to transition to "searching"
966 // when it wakes when the I/O driver receives new events.
967 self.is_searching = !worker
968 .handle
969 .shared
970 .idle
971 .unpark_worker_by_id(&worker.handle.shared, worker.index);
972 return true;
973 }
974
975 if worker
976 .handle
977 .shared
978 .idle
979 .is_parked(&worker.handle.shared, worker.index)
980 {
981 return false;
982 }
983
984 // When unparked, the worker is in the searching state.
985 self.is_searching = true;
986 true
987 }
988
989 /// Runs maintenance work such as checking the pool's state.
990 fn maintenance(&mut self, worker: &Worker) {
991 self.stats
992 .submit(&worker.handle.shared.worker_metrics[worker.index]);
993
994 if !self.is_shutdown {
995 // Check if the scheduler has been shutdown
996 let synced = worker.handle.shared.synced.lock();
997 self.is_shutdown = worker.inject().is_closed(&synced.inject);
998 }
999
1000 if !self.is_traced {
1001 // Check if the worker should be tracing.
1002 self.is_traced = worker.handle.shared.trace_status.trace_requested();
1003 }
1004 }
1005
1006 /// Signals all tasks to shut down, and waits for them to complete. Must run
1007 /// before we enter the single-threaded phase of shutdown processing.
1008 fn pre_shutdown(&mut self, worker: &Worker) {
1009 // Start from a random inner list
1010 let start = self
1011 .rand
1012 .fastrand_n(worker.handle.shared.owned.get_shard_size() as u32);
1013 // Signal to all tasks to shut down.
1014 worker
1015 .handle
1016 .shared
1017 .owned
1018 .close_and_shutdown_all(start as usize);
1019
1020 self.stats
1021 .submit(&worker.handle.shared.worker_metrics[worker.index]);
1022 }
1023
1024 /// Shuts down the core.
1025 fn shutdown(&mut self, handle: &Handle) {
1026 // Take the core
1027 let mut park = self.park.take().expect("park missing");
1028
1029 // Drain the queue
1030 while self.next_local_task().is_some() {}
1031
1032 park.shutdown(&handle.driver);
1033 }
1034
1035 fn tune_global_queue_interval(&mut self, worker: &Worker) {
1036 let next = self
1037 .stats
1038 .tuned_global_queue_interval(&worker.handle.shared.config);
1039
1040 // Smooth out jitter
1041 if u32::abs_diff(self.global_queue_interval, next) > 2 {
1042 self.global_queue_interval = next;
1043 }
1044 }
1045}
1046
1047impl Worker {
1048 /// Returns a reference to the scheduler's injection queue.
1049 fn inject(&self) -> &inject::Shared<Arc<Handle>> {
1050 &self.handle.shared.inject
1051 }
1052}
1053
1054impl Handle {
1055 pub(super) fn schedule_task(&self, task: Notified, is_yield: bool) {
1056 with_current(|maybe_cx| {
1057 if let Some(cx) = maybe_cx {
1058 // Make sure the task is part of the **current** scheduler.
1059 if self.ptr_eq(&cx.worker.handle) {
1060 // And the current thread still holds a core
1061 if let Some(core) = cx.core.borrow_mut().as_mut() {
1062 self.schedule_local(core, task, is_yield);
1063 return;
1064 }
1065 }
1066 }
1067
1068 // Otherwise, use the inject queue.
1069 self.push_remote_task(task);
1070 self.notify_parked_remote();
1071 });
1072 }
1073
1074 pub(super) fn schedule_option_task_without_yield(&self, task: Option<Notified>) {
1075 if let Some(task) = task {
1076 self.schedule_task(task, false);
1077 }
1078 }
1079
1080 fn schedule_local(&self, core: &mut Core, task: Notified, is_yield: bool) {
1081 core.stats.inc_local_schedule_count();
1082
1083 // Spawning from the worker thread. If scheduling a "yield" then the
1084 // task must always be pushed to the back of the queue, enabling other
1085 // tasks to be executed. If **not** a yield, then there is more
1086 // flexibility and the task may go to the front of the queue.
1087 let should_notify = if is_yield || !core.lifo_enabled {
1088 core.run_queue
1089 .push_back_or_overflow(task, self, &mut core.stats);
1090 true
1091 } else {
1092 // Push to the LIFO slot
1093 let prev = core.lifo_slot.take();
1094 let ret = prev.is_some();
1095
1096 if let Some(prev) = prev {
1097 core.run_queue
1098 .push_back_or_overflow(prev, self, &mut core.stats);
1099 }
1100
1101 core.lifo_slot = Some(task);
1102
1103 ret
1104 };
1105
1106 // Only notify if not currently parked. If `park` is `None`, then the
1107 // scheduling is from a resource driver. As notifications often come in
1108 // batches, the notification is delayed until the park is complete.
1109 if should_notify && core.park.is_some() {
1110 self.notify_parked_local();
1111 }
1112 }
1113
1114 fn next_remote_task(&self) -> Option<Notified> {
1115 if self.shared.inject.is_empty() {
1116 return None;
1117 }
1118
1119 let mut synced = self.shared.synced.lock();
1120 // safety: passing in correct `idle::Synced`
1121 unsafe { self.shared.inject.pop(&mut synced.inject) }
1122 }
1123
1124 fn push_remote_task(&self, task: Notified) {
1125 self.shared.scheduler_metrics.inc_remote_schedule_count();
1126
1127 let mut synced = self.shared.synced.lock();
1128 // safety: passing in correct `idle::Synced`
1129 unsafe {
1130 self.shared.inject.push(&mut synced.inject, task);
1131 }
1132 }
1133
1134 pub(super) fn close(&self) {
1135 if self
1136 .shared
1137 .inject
1138 .close(&mut self.shared.synced.lock().inject)
1139 {
1140 self.notify_all();
1141 }
1142 }
1143
1144 fn notify_parked_local(&self) {
1145 super::counters::inc_num_inc_notify_local();
1146
1147 if let Some(index) = self.shared.idle.worker_to_notify(&self.shared) {
1148 super::counters::inc_num_unparks_local();
1149 self.shared.remotes[index].unpark.unpark(&self.driver);
1150 }
1151 }
1152
1153 fn notify_parked_remote(&self) {
1154 if let Some(index) = self.shared.idle.worker_to_notify(&self.shared) {
1155 self.shared.remotes[index].unpark.unpark(&self.driver);
1156 }
1157 }
1158
1159 pub(super) fn notify_all(&self) {
1160 for remote in &self.shared.remotes[..] {
1161 remote.unpark.unpark(&self.driver);
1162 }
1163 }
1164
1165 fn notify_if_work_pending(&self) {
1166 for remote in &self.shared.remotes[..] {
1167 if !remote.steal.is_empty() {
1168 self.notify_parked_local();
1169 return;
1170 }
1171 }
1172
1173 if !self.shared.inject.is_empty() {
1174 self.notify_parked_local();
1175 }
1176 }
1177
1178 fn transition_worker_from_searching(&self) {
1179 if self.shared.idle.transition_worker_from_searching() {
1180 // We are the final searching worker. Because work was found, we
1181 // need to notify another worker.
1182 self.notify_parked_local();
1183 }
1184 }
1185
1186 /// Signals that a worker has observed the shutdown signal and has replaced
1187 /// its core back into its handle.
1188 ///
1189 /// If all workers have reached this point, the final cleanup is performed.
1190 fn shutdown_core(&self, core: Box<Core>) {
1191 let mut cores = self.shared.shutdown_cores.lock();
1192 cores.push(core);
1193
1194 if cores.len() != self.shared.remotes.len() {
1195 return;
1196 }
1197
1198 debug_assert!(self.shared.owned.is_empty());
1199
1200 for mut core in cores.drain(..) {
1201 core.shutdown(self);
1202 }
1203
1204 // Drain the injection queue
1205 //
1206 // We already shut down every task, so we can simply drop the tasks.
1207 while let Some(task) = self.next_remote_task() {
1208 drop(task);
1209 }
1210 }
1211
1212 fn ptr_eq(&self, other: &Handle) -> bool {
1213 std::ptr::eq(self, other)
1214 }
1215}
1216
1217impl Overflow<Arc<Handle>> for Handle {
1218 fn push(&self, task: task::Notified<Arc<Handle>>) {
1219 self.push_remote_task(task);
1220 }
1221
1222 fn push_batch<I>(&self, iter: I)
1223 where
1224 I: Iterator<Item = task::Notified<Arc<Handle>>>,
1225 {
1226 unsafe {
1227 self.shared.inject.push_batch(self, iter);
1228 }
1229 }
1230}
1231
1232pub(crate) struct InjectGuard<'a> {
1233 lock: crate::loom::sync::MutexGuard<'a, Synced>,
1234}
1235
1236impl<'a> AsMut<inject::Synced> for InjectGuard<'a> {
1237 fn as_mut(&mut self) -> &mut inject::Synced {
1238 &mut self.lock.inject
1239 }
1240}
1241
1242impl<'a> Lock<inject::Synced> for &'a Handle {
1243 type Handle = InjectGuard<'a>;
1244
1245 fn lock(self) -> Self::Handle {
1246 InjectGuard {
1247 lock: self.shared.synced.lock(),
1248 }
1249 }
1250}
1251
1252#[track_caller]
1253fn with_current<R>(f: impl FnOnce(Option<&Context>) -> R) -> R {
1254 use scheduler::Context::MultiThread;
1255
1256 context::with_scheduler(|ctx| match ctx {
1257 Some(MultiThread(ctx)) => f(Some(ctx)),
1258 _ => f(None),
1259 })
1260}