futures_util/stream/futures_unordered/
task.rs

1use alloc::sync::{Arc, Weak};
2use core::cell::UnsafeCell;
3use core::sync::atomic::Ordering::{self, Relaxed, SeqCst};
4use core::sync::atomic::{AtomicBool, AtomicPtr};
5
6use super::abort::abort;
7use super::ReadyToRunQueue;
8use crate::task::ArcWake;
9
10pub(super) struct Task<Fut> {
11    // The future
12    pub(super) future: UnsafeCell<Option<Fut>>,
13
14    // Next pointer for linked list tracking all active tasks (use
15    // `spin_next_all` to read when access is shared across threads)
16    pub(super) next_all: AtomicPtr<Task<Fut>>,
17
18    // Previous task in linked list tracking all active tasks
19    pub(super) prev_all: UnsafeCell<*const Task<Fut>>,
20
21    // Length of the linked list tracking all active tasks when this node was
22    // inserted (use `spin_next_all` to synchronize before reading when access
23    // is shared across threads)
24    pub(super) len_all: UnsafeCell<usize>,
25
26    // Next pointer in ready to run queue
27    pub(super) next_ready_to_run: AtomicPtr<Task<Fut>>,
28
29    // Queue that we'll be enqueued to when woken
30    pub(super) ready_to_run_queue: Weak<ReadyToRunQueue<Fut>>,
31
32    // Whether or not this task is currently in the ready to run queue
33    pub(super) queued: AtomicBool,
34
35    // Whether the future was awoken during polling
36    // It is possible for this flag to be set to true after the polling,
37    // but it will be ignored.
38    pub(super) woken: AtomicBool,
39}
40
41// `Task` can be sent across threads safely because it ensures that
42// the underlying `Fut` type isn't touched from any of its methods.
43//
44// The parent (`super`) module is trusted not to access `future`
45// across different threads.
46unsafe impl<Fut> Send for Task<Fut> {}
47unsafe impl<Fut> Sync for Task<Fut> {}
48
49impl<Fut> ArcWake for Task<Fut> {
50    fn wake_by_ref(arc_self: &Arc<Self>) {
51        let inner = match arc_self.ready_to_run_queue.upgrade() {
52            Some(inner) => inner,
53            None => return,
54        };
55
56        arc_self.woken.store(true, Relaxed);
57
58        // It's our job to enqueue this task it into the ready to run queue. To
59        // do this we set the `queued` flag, and if successful we then do the
60        // actual queueing operation, ensuring that we're only queued once.
61        //
62        // Once the task is inserted call `wake` to notify the parent task,
63        // as it'll want to come along and run our task later.
64        //
65        // Note that we don't change the reference count of the task here,
66        // we merely enqueue the raw pointer. The `FuturesUnordered`
67        // implementation guarantees that if we set the `queued` flag that
68        // there's a reference count held by the main `FuturesUnordered` queue
69        // still.
70        let prev = arc_self.queued.swap(true, SeqCst);
71        if !prev {
72            inner.enqueue(Arc::as_ptr(arc_self));
73            inner.waker.wake();
74        }
75    }
76}
77
78impl<Fut> Task<Fut> {
79    /// Returns a waker reference for this task without cloning the Arc.
80    pub(super) unsafe fn waker_ref(this: &Arc<Self>) -> waker_ref::WakerRef<'_> {
81        unsafe { waker_ref::waker_ref(this) }
82    }
83
84    /// Spins until `next_all` is no longer set to `pending_next_all`.
85    ///
86    /// The temporary `pending_next_all` value is typically overwritten fairly
87    /// quickly after a node is inserted into the list of all futures, so this
88    /// should rarely spin much.
89    ///
90    /// When it returns, the correct `next_all` value is returned.
91    ///
92    /// `Relaxed` or `Acquire` ordering can be used. `Acquire` ordering must be
93    /// used before `len_all` can be safely read.
94    #[inline]
95    pub(super) fn spin_next_all(
96        &self,
97        pending_next_all: *mut Self,
98        ordering: Ordering,
99    ) -> *const Self {
100        loop {
101            let next = self.next_all.load(ordering);
102            if next != pending_next_all {
103                return next;
104            }
105        }
106    }
107}
108
109impl<Fut> Drop for Task<Fut> {
110    fn drop(&mut self) {
111        // Since `Task<Fut>` is sent across all threads for any lifetime,
112        // regardless of `Fut`, we, to guarantee memory safety, can't actually
113        // touch `Fut` at any time except when we have a reference to the
114        // `FuturesUnordered` itself .
115        //
116        // Consequently it *should* be the case that we always drop futures from
117        // the `FuturesUnordered` instance. This is a bomb, just in case there's
118        // a bug in that logic.
119        unsafe {
120            if (*self.future.get()).is_some() {
121                abort("future still here when dropping");
122            }
123        }
124    }
125}
126
127mod waker_ref {
128    use alloc::sync::Arc;
129    use core::marker::PhantomData;
130    use core::mem;
131    use core::mem::ManuallyDrop;
132    use core::ops::Deref;
133    use core::task::{RawWaker, RawWakerVTable, Waker};
134    use futures_task::ArcWake;
135
136    pub(crate) struct WakerRef<'a> {
137        waker: ManuallyDrop<Waker>,
138        _marker: PhantomData<&'a ()>,
139    }
140
141    impl WakerRef<'_> {
142        #[inline]
143        fn new_unowned(waker: ManuallyDrop<Waker>) -> Self {
144            Self { waker, _marker: PhantomData }
145        }
146    }
147
148    impl Deref for WakerRef<'_> {
149        type Target = Waker;
150
151        #[inline]
152        fn deref(&self) -> &Waker {
153            &self.waker
154        }
155    }
156
157    /// Copy of `future_task::waker_ref` without `W: 'static` bound.
158    ///
159    /// # Safety
160    ///
161    /// The caller must guarantee that use-after-free will not occur.
162    #[inline]
163    pub(crate) unsafe fn waker_ref<W>(wake: &Arc<W>) -> WakerRef<'_>
164    where
165        W: ArcWake,
166    {
167        // simply copy the pointer instead of using Arc::into_raw,
168        // as we don't actually keep a refcount by using ManuallyDrop.<
169        let ptr = Arc::as_ptr(wake).cast::<()>();
170
171        let waker =
172            ManuallyDrop::new(unsafe { Waker::from_raw(RawWaker::new(ptr, waker_vtable::<W>())) });
173        WakerRef::new_unowned(waker)
174    }
175
176    fn waker_vtable<W: ArcWake>() -> &'static RawWakerVTable {
177        &RawWakerVTable::new(
178            clone_arc_raw::<W>,
179            wake_arc_raw::<W>,
180            wake_by_ref_arc_raw::<W>,
181            drop_arc_raw::<W>,
182        )
183    }
184
185    // FIXME: panics on Arc::clone / refcount changes could wreak havoc on the
186    // code here. We should guard against this by aborting.
187
188    unsafe fn increase_refcount<T: ArcWake>(data: *const ()) {
189        // Retain Arc, but don't touch refcount by wrapping in ManuallyDrop
190        let arc = mem::ManuallyDrop::new(unsafe { Arc::<T>::from_raw(data.cast::<T>()) });
191        // Now increase refcount, but don't drop new refcount either
192        let _arc_clone: mem::ManuallyDrop<_> = arc.clone();
193    }
194
195    unsafe fn clone_arc_raw<T: ArcWake>(data: *const ()) -> RawWaker {
196        unsafe { increase_refcount::<T>(data) }
197        RawWaker::new(data, waker_vtable::<T>())
198    }
199
200    unsafe fn wake_arc_raw<T: ArcWake>(data: *const ()) {
201        let arc: Arc<T> = unsafe { Arc::from_raw(data.cast::<T>()) };
202        ArcWake::wake(arc);
203    }
204
205    unsafe fn wake_by_ref_arc_raw<T: ArcWake>(data: *const ()) {
206        // Retain Arc, but don't touch refcount by wrapping in ManuallyDrop
207        let arc = mem::ManuallyDrop::new(unsafe { Arc::<T>::from_raw(data.cast::<T>()) });
208        ArcWake::wake_by_ref(&arc);
209    }
210
211    unsafe fn drop_arc_raw<T: ArcWake>(data: *const ()) {
212        drop(unsafe { Arc::<T>::from_raw(data.cast::<T>()) })
213    }
214}