plotters/coord/ranged1d/combinators/
ckps.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
// The customized coordinate combinators.
// This file contains a set of coorindate combinators that allows you determine the
// keypoint by your own code.
use std::ops::Range;

use crate::coord::ranged1d::{AsRangedCoord, DiscreteRanged, KeyPointHint, Ranged};

/// The coordinate decorator that binds a key point vector.
/// Normally, all the ranged coordinate implements its own keypoint algorithm
/// to determine how to render the tick mark and mesh grid.
/// This decorator allows customized tick mark specifiied by vector.
/// See [BindKeyPoints::with_key_points](trait.BindKeyPoints.html#tymethod.with_key_points)
/// for details.
/// Note: For any coordinate spec wrapped by this decorator, the maximum number of labels configured by
/// MeshStyle will be ignored and the key point function will always returns the entire vector
pub struct WithKeyPoints<Inner: Ranged> {
    inner: Inner,
    bold_points: Vec<Inner::ValueType>,
    light_points: Vec<Inner::ValueType>,
}

impl<I: Ranged> WithKeyPoints<I> {
    /// Specify the light key points, which is used to render the light mesh line
    pub fn with_light_points<T: IntoIterator<Item = I::ValueType>>(mut self, iter: T) -> Self {
        self.light_points.clear();
        self.light_points.extend(iter);
        self
    }

    /// Get a reference to the bold points
    pub fn bold_points(&self) -> &[I::ValueType] {
        self.bold_points.as_ref()
    }

    /// Get a mut reference to the bold points
    pub fn bold_points_mut(&mut self) -> &mut [I::ValueType] {
        self.bold_points.as_mut()
    }

    /// Get a reference to light key points
    pub fn light_points(&self) -> &[I::ValueType] {
        self.light_points.as_ref()
    }

    /// Get a mut reference to the light key points
    pub fn light_points_mut(&mut self) -> &mut [I::ValueType] {
        self.light_points.as_mut()
    }
}

impl<R: Ranged> Ranged for WithKeyPoints<R>
where
    R::ValueType: Clone,
{
    type ValueType = R::ValueType;
    type FormatOption = R::FormatOption;

    fn range(&self) -> Range<Self::ValueType> {
        self.inner.range()
    }

    fn map(&self, value: &Self::ValueType, limit: (i32, i32)) -> i32 {
        self.inner.map(value, limit)
    }

    fn key_points<Hint: KeyPointHint>(&self, hint: Hint) -> Vec<Self::ValueType> {
        if hint.weight().allow_light_points() {
            self.light_points.clone()
        } else {
            self.bold_points.clone()
        }
    }

    fn axis_pixel_range(&self, limit: (i32, i32)) -> Range<i32> {
        self.inner.axis_pixel_range(limit)
    }
}

impl<R: DiscreteRanged> DiscreteRanged for WithKeyPoints<R>
where
    R::ValueType: Clone,
{
    fn size(&self) -> usize {
        self.inner.size()
    }
    fn index_of(&self, value: &Self::ValueType) -> Option<usize> {
        self.inner.index_of(value)
    }
    fn from_index(&self, index: usize) -> Option<Self::ValueType> {
        self.inner.from_index(index)
    }
}

/// Bind a existing coordinate spec with a given key points vector. See [WithKeyPoints](struct.WithKeyPoints.html ) for more details.
pub trait BindKeyPoints
where
    Self: AsRangedCoord,
{
    /// Bind a existing coordinate spec with a given key points vector. See [WithKeyPoints](struct.WithKeyPoints.html ) for more details.
    /// Example:
    /// ```
    ///use plotters::prelude::*;
    ///use plotters_bitmap::BitMapBackend;
    ///let mut buffer = vec![0;1024*768*3];
    /// let root = BitMapBackend::with_buffer(&mut buffer, (1024, 768)).into_drawing_area();
    /// let mut chart = ChartBuilder::on(&root)
    ///    .build_cartesian_2d(
    ///        (0..100).with_key_points(vec![1,20,50,90]),   // <= This line will make the plot shows 4 tick marks at 1, 20, 50, 90
    ///        0..10
    /// ).unwrap();
    /// chart.configure_mesh().draw().unwrap();
    ///```
    fn with_key_points(self, points: Vec<Self::Value>) -> WithKeyPoints<Self::CoordDescType> {
        WithKeyPoints {
            inner: self.into(),
            bold_points: points,
            light_points: vec![],
        }
    }
}

impl<T: AsRangedCoord> BindKeyPoints for T {}

/// The coordinate decorator that allows customized keypoint algorithms.
/// Normally, all the coordinate spec implements its own key point algorithm
/// But this decorator allows you override the pre-defined key point algorithm.
///
/// To use this decorator, see [BindKeyPointMethod::with_key_point_func](trait.BindKeyPointMethod.html#tymethod.with_key_point_func)
pub struct WithKeyPointMethod<R: Ranged> {
    inner: R,
    bold_func: Box<dyn Fn(usize) -> Vec<R::ValueType>>,
    light_func: Box<dyn Fn(usize) -> Vec<R::ValueType>>,
}

/// Bind an existing coordinate spec with a given key points algorithm. See [WithKeyPointMethod](struct.WithKeyMethod.html ) for more details.
pub trait BindKeyPointMethod
where
    Self: AsRangedCoord,
{
    /// Bind a existing coordinate spec with a given key points algorithm. See [WithKeyPointMethod](struct.WithKeyMethod.html ) for more details.
    /// Example:
    /// ```
    ///use plotters::prelude::*;
    ///use plotters_bitmap::BitMapBackend;
    ///let mut buffer = vec![0;1024*768*3];
    /// let root = BitMapBackend::with_buffer(&mut buffer, (1024, 768)).into_drawing_area();
    /// let mut chart = ChartBuilder::on(&root)
    ///    .build_cartesian_2d(
    ///        (0..100).with_key_point_func(|n| (0..100 / n as i32).map(|x| x * 100 / n as i32).collect()),
    ///        0..10
    /// ).unwrap();
    /// chart.configure_mesh().draw().unwrap();
    ///```
    fn with_key_point_func<F: Fn(usize) -> Vec<Self::Value> + 'static>(
        self,
        func: F,
    ) -> WithKeyPointMethod<Self::CoordDescType> {
        WithKeyPointMethod {
            inner: self.into(),
            bold_func: Box::new(func),
            light_func: Box::new(|_| Vec::new()),
        }
    }
}

impl<T: AsRangedCoord> BindKeyPointMethod for T {}

impl<R: Ranged> WithKeyPointMethod<R> {
    /// Define the light key point algorithm, by default this returns an empty set
    pub fn with_light_point_func<F: Fn(usize) -> Vec<R::ValueType> + 'static>(
        mut self,
        func: F,
    ) -> Self {
        self.light_func = Box::new(func);
        self
    }
}

impl<R: Ranged> Ranged for WithKeyPointMethod<R> {
    type ValueType = R::ValueType;
    type FormatOption = R::FormatOption;

    fn range(&self) -> Range<Self::ValueType> {
        self.inner.range()
    }

    fn map(&self, value: &Self::ValueType, limit: (i32, i32)) -> i32 {
        self.inner.map(value, limit)
    }

    fn key_points<Hint: KeyPointHint>(&self, hint: Hint) -> Vec<Self::ValueType> {
        if hint.weight().allow_light_points() {
            (self.light_func)(hint.max_num_points())
        } else {
            (self.bold_func)(hint.max_num_points())
        }
    }

    fn axis_pixel_range(&self, limit: (i32, i32)) -> Range<i32> {
        self.inner.axis_pixel_range(limit)
    }
}

impl<R: DiscreteRanged> DiscreteRanged for WithKeyPointMethod<R> {
    fn size(&self) -> usize {
        self.inner.size()
    }
    fn index_of(&self, value: &Self::ValueType) -> Option<usize> {
        self.inner.index_of(value)
    }
    fn from_index(&self, index: usize) -> Option<Self::ValueType> {
        self.inner.from_index(index)
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::coord::ranged1d::{BoldPoints, LightPoints};
    #[test]
    fn test_with_key_points() {
        let range = (0..100).with_key_points(vec![1, 2, 3]);
        assert_eq!(range.map(&3, (0, 1000)), 30);
        assert_eq!(range.range(), 0..100);
        assert_eq!(range.key_points(BoldPoints(100)), vec![1, 2, 3]);
        assert_eq!(range.key_points(LightPoints::new(100, 100)), vec![]);
        let range = range.with_light_points(5..10);
        assert_eq!(range.key_points(BoldPoints(10)), vec![1, 2, 3]);
        assert_eq!(
            range.key_points(LightPoints::new(10, 10)),
            (5..10).collect::<Vec<_>>()
        );

        assert_eq!(range.size(), 101);
        assert_eq!(range.index_of(&10), Some(10));
        assert_eq!(range.from_index(10), Some(10));

        assert_eq!(range.axis_pixel_range((0, 1000)), 0..1000);

        let mut range = range;

        assert_eq!(range.light_points().len(), 5);
        assert_eq!(range.light_points_mut().len(), 5);
        assert_eq!(range.bold_points().len(), 3);
        assert_eq!(range.bold_points_mut().len(), 3);
    }

    #[test]
    fn test_with_key_point_method() {
        let range = (0..100).with_key_point_func(|_| vec![1, 2, 3]);
        assert_eq!(range.map(&3, (0, 1000)), 30);
        assert_eq!(range.range(), 0..100);
        assert_eq!(range.key_points(BoldPoints(100)), vec![1, 2, 3]);
        assert_eq!(range.key_points(LightPoints::new(100, 100)), vec![]);
        let range = range.with_light_point_func(|_| (5..10).collect());
        assert_eq!(range.key_points(BoldPoints(10)), vec![1, 2, 3]);
        assert_eq!(
            range.key_points(LightPoints::new(10, 10)),
            (5..10).collect::<Vec<_>>()
        );

        assert_eq!(range.size(), 101);
        assert_eq!(range.index_of(&10), Some(10));
        assert_eq!(range.from_index(10), Some(10));

        assert_eq!(range.axis_pixel_range((0, 1000)), 0..1000);
    }
}