itertools/ziptuple.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
use super::size_hint;
/// See [`multizip`] for more information.
#[derive(Clone, Debug)]
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct Zip<T> {
t: T,
}
/// An iterator that generalizes *.zip()* and allows running multiple iterators in lockstep.
///
/// The iterator `Zip<(I, J, ..., M)>` is formed from a tuple of iterators (or values that
/// implement [`IntoIterator`]) and yields elements
/// until any of the subiterators yields `None`.
///
/// The iterator element type is a tuple like like `(A, B, ..., E)` where `A` to `E` are the
/// element types of the subiterator.
///
/// **Note:** The result of this macro is a value of a named type (`Zip<(I, J,
/// ..)>` of each component iterator `I, J, ...`) if each component iterator is
/// nameable.
///
/// Prefer [`izip!()`] over `multizip` for the performance benefits of using the
/// standard library `.zip()`. Prefer `multizip` if a nameable type is needed.
///
/// ```
/// use itertools::multizip;
///
/// // iterate over three sequences side-by-side
/// let mut results = [0, 0, 0, 0];
/// let inputs = [3, 7, 9, 6];
///
/// for (r, index, input) in multizip((&mut results, 0..10, &inputs)) {
/// *r = index * 10 + input;
/// }
///
/// assert_eq!(results, [0 + 3, 10 + 7, 29, 36]);
/// ```
/// [`izip!()`]: crate::izip
pub fn multizip<T, U>(t: U) -> Zip<T>
where Zip<T>: From<U>,
Zip<T>: Iterator,
{
Zip::from(t)
}
macro_rules! impl_zip_iter {
($($B:ident),*) => (
#[allow(non_snake_case)]
impl<$($B: IntoIterator),*> From<($($B,)*)> for Zip<($($B::IntoIter,)*)> {
fn from(t: ($($B,)*)) -> Self {
let ($($B,)*) = t;
Zip { t: ($($B.into_iter(),)*) }
}
}
#[allow(non_snake_case)]
#[allow(unused_assignments)]
impl<$($B),*> Iterator for Zip<($($B,)*)>
where
$(
$B: Iterator,
)*
{
type Item = ($($B::Item,)*);
fn next(&mut self) -> Option<Self::Item>
{
let ($(ref mut $B,)*) = self.t;
// NOTE: Just like iter::Zip, we check the iterators
// for None in order. We may finish unevenly (some
// iterators gave n + 1 elements, some only n).
$(
let $B = match $B.next() {
None => return None,
Some(elt) => elt
};
)*
Some(($($B,)*))
}
fn size_hint(&self) -> (usize, Option<usize>)
{
let sh = (::std::usize::MAX, None);
let ($(ref $B,)*) = self.t;
$(
let sh = size_hint::min($B.size_hint(), sh);
)*
sh
}
}
#[allow(non_snake_case)]
impl<$($B),*> ExactSizeIterator for Zip<($($B,)*)> where
$(
$B: ExactSizeIterator,
)*
{ }
#[allow(non_snake_case)]
impl<$($B),*> DoubleEndedIterator for Zip<($($B,)*)> where
$(
$B: DoubleEndedIterator + ExactSizeIterator,
)*
{
#[inline]
fn next_back(&mut self) -> Option<Self::Item> {
let ($(ref mut $B,)*) = self.t;
let size = *[$( $B.len(), )*].iter().min().unwrap();
$(
if $B.len() != size {
for _ in 0..$B.len() - size { $B.next_back(); }
}
)*
match ($($B.next_back(),)*) {
($(Some($B),)*) => Some(($($B,)*)),
_ => None,
}
}
}
);
}
impl_zip_iter!(A);
impl_zip_iter!(A, B);
impl_zip_iter!(A, B, C);
impl_zip_iter!(A, B, C, D);
impl_zip_iter!(A, B, C, D, E);
impl_zip_iter!(A, B, C, D, E, F);
impl_zip_iter!(A, B, C, D, E, F, G);
impl_zip_iter!(A, B, C, D, E, F, G, H);
impl_zip_iter!(A, B, C, D, E, F, G, H, I);
impl_zip_iter!(A, B, C, D, E, F, G, H, I, J);
impl_zip_iter!(A, B, C, D, E, F, G, H, I, J, K);
impl_zip_iter!(A, B, C, D, E, F, G, H, I, J, K, L);