http/header/map.rs
1use std::collections::hash_map::RandomState;
2use std::collections::HashMap;
3use std::convert::TryFrom;
4use std::hash::{BuildHasher, Hash, Hasher};
5use std::iter::{FromIterator, FusedIterator};
6use std::marker::PhantomData;
7use std::{fmt, mem, ops, ptr, vec};
8
9use crate::Error;
10
11use super::name::{HdrName, HeaderName, InvalidHeaderName};
12use super::HeaderValue;
13
14pub use self::as_header_name::AsHeaderName;
15pub use self::into_header_name::IntoHeaderName;
16
17/// A set of HTTP headers
18///
19/// `HeaderMap` is a multimap of [`HeaderName`] to values.
20///
21/// [`HeaderName`]: struct.HeaderName.html
22///
23/// # Examples
24///
25/// Basic usage
26///
27/// ```
28/// # use http::HeaderMap;
29/// # use http::header::{CONTENT_LENGTH, HOST, LOCATION};
30/// let mut headers = HeaderMap::new();
31///
32/// headers.insert(HOST, "example.com".parse().unwrap());
33/// headers.insert(CONTENT_LENGTH, "123".parse().unwrap());
34///
35/// assert!(headers.contains_key(HOST));
36/// assert!(!headers.contains_key(LOCATION));
37///
38/// assert_eq!(headers[HOST], "example.com");
39///
40/// headers.remove(HOST);
41///
42/// assert!(!headers.contains_key(HOST));
43/// ```
44#[derive(Clone)]
45pub struct HeaderMap<T = HeaderValue> {
46 // Used to mask values to get an index
47 mask: Size,
48 indices: Box<[Pos]>,
49 entries: Vec<Bucket<T>>,
50 extra_values: Vec<ExtraValue<T>>,
51 danger: Danger,
52}
53
54// # Implementation notes
55//
56// Below, you will find a fairly large amount of code. Most of this is to
57// provide the necessary functions to efficiently manipulate the header
58// multimap. The core hashing table is based on robin hood hashing [1]. While
59// this is the same hashing algorithm used as part of Rust's `HashMap` in
60// stdlib, many implementation details are different. The two primary reasons
61// for this divergence are that `HeaderMap` is a multimap and the structure has
62// been optimized to take advantage of the characteristics of HTTP headers.
63//
64// ## Structure Layout
65//
66// Most of the data contained by `HeaderMap` is *not* stored in the hash table.
67// Instead, pairs of header name and *first* associated header value are stored
68// in the `entries` vector. If the header name has more than one associated
69// header value, then additional values are stored in `extra_values`. The actual
70// hash table (`indices`) only maps hash codes to indices in `entries`. This
71// means that, when an eviction happens, the actual header name and value stay
72// put and only a tiny amount of memory has to be copied.
73//
74// Extra values associated with a header name are tracked using a linked list.
75// Links are formed with offsets into `extra_values` and not pointers.
76//
77// [1]: https://en.wikipedia.org/wiki/Hash_table#Robin_Hood_hashing
78
79/// `HeaderMap` entry iterator.
80///
81/// Yields `(&HeaderName, &value)` tuples. The same header name may be yielded
82/// more than once if it has more than one associated value.
83#[derive(Debug)]
84pub struct Iter<'a, T> {
85 map: &'a HeaderMap<T>,
86 entry: usize,
87 cursor: Option<Cursor>,
88}
89
90/// `HeaderMap` mutable entry iterator
91///
92/// Yields `(&HeaderName, &mut value)` tuples. The same header name may be
93/// yielded more than once if it has more than one associated value.
94#[derive(Debug)]
95pub struct IterMut<'a, T> {
96 map: *mut HeaderMap<T>,
97 entry: usize,
98 cursor: Option<Cursor>,
99 lt: PhantomData<&'a mut HeaderMap<T>>,
100}
101
102/// An owning iterator over the entries of a `HeaderMap`.
103///
104/// This struct is created by the `into_iter` method on `HeaderMap`.
105#[derive(Debug)]
106pub struct IntoIter<T> {
107 // If None, pull from `entries`
108 next: Option<usize>,
109 entries: vec::IntoIter<Bucket<T>>,
110 extra_values: Vec<ExtraValue<T>>,
111}
112
113/// An iterator over `HeaderMap` keys.
114///
115/// Each header name is yielded only once, even if it has more than one
116/// associated value.
117#[derive(Debug)]
118pub struct Keys<'a, T> {
119 inner: ::std::slice::Iter<'a, Bucket<T>>,
120}
121
122/// `HeaderMap` value iterator.
123///
124/// Each value contained in the `HeaderMap` will be yielded.
125#[derive(Debug)]
126pub struct Values<'a, T> {
127 inner: Iter<'a, T>,
128}
129
130/// `HeaderMap` mutable value iterator
131#[derive(Debug)]
132pub struct ValuesMut<'a, T> {
133 inner: IterMut<'a, T>,
134}
135
136/// A drain iterator for `HeaderMap`.
137#[derive(Debug)]
138pub struct Drain<'a, T> {
139 idx: usize,
140 len: usize,
141 entries: *mut [Bucket<T>],
142 // If None, pull from `entries`
143 next: Option<usize>,
144 extra_values: *mut Vec<ExtraValue<T>>,
145 lt: PhantomData<&'a mut HeaderMap<T>>,
146}
147
148/// A view to all values stored in a single entry.
149///
150/// This struct is returned by `HeaderMap::get_all`.
151#[derive(Debug)]
152pub struct GetAll<'a, T> {
153 map: &'a HeaderMap<T>,
154 index: Option<usize>,
155}
156
157/// A view into a single location in a `HeaderMap`, which may be vacant or occupied.
158#[derive(Debug)]
159pub enum Entry<'a, T: 'a> {
160 /// An occupied entry
161 Occupied(OccupiedEntry<'a, T>),
162
163 /// A vacant entry
164 Vacant(VacantEntry<'a, T>),
165}
166
167/// A view into a single empty location in a `HeaderMap`.
168///
169/// This struct is returned as part of the `Entry` enum.
170#[derive(Debug)]
171pub struct VacantEntry<'a, T> {
172 map: &'a mut HeaderMap<T>,
173 key: HeaderName,
174 hash: HashValue,
175 probe: usize,
176 danger: bool,
177}
178
179/// A view into a single occupied location in a `HeaderMap`.
180///
181/// This struct is returned as part of the `Entry` enum.
182#[derive(Debug)]
183pub struct OccupiedEntry<'a, T> {
184 map: &'a mut HeaderMap<T>,
185 probe: usize,
186 index: usize,
187}
188
189/// An iterator of all values associated with a single header name.
190#[derive(Debug)]
191pub struct ValueIter<'a, T> {
192 map: &'a HeaderMap<T>,
193 index: usize,
194 front: Option<Cursor>,
195 back: Option<Cursor>,
196}
197
198/// A mutable iterator of all values associated with a single header name.
199#[derive(Debug)]
200pub struct ValueIterMut<'a, T> {
201 map: *mut HeaderMap<T>,
202 index: usize,
203 front: Option<Cursor>,
204 back: Option<Cursor>,
205 lt: PhantomData<&'a mut HeaderMap<T>>,
206}
207
208/// An drain iterator of all values associated with a single header name.
209#[derive(Debug)]
210pub struct ValueDrain<'a, T> {
211 first: Option<T>,
212 next: Option<::std::vec::IntoIter<T>>,
213 lt: PhantomData<&'a mut HeaderMap<T>>,
214}
215
216/// Error returned when max capacity of `HeaderMap` is exceeded
217pub struct MaxSizeReached {
218 _priv: (),
219}
220
221/// Tracks the value iterator state
222#[derive(Debug, Copy, Clone, Eq, PartialEq)]
223enum Cursor {
224 Head,
225 Values(usize),
226}
227
228/// Type used for representing the size of a HeaderMap value.
229///
230/// 32,768 is more than enough entries for a single header map. Setting this
231/// limit enables using `u16` to represent all offsets, which takes 2 bytes
232/// instead of 8 on 64 bit processors.
233///
234/// Setting this limit is especially beneficial for `indices`, making it more
235/// cache friendly. More hash codes can fit in a cache line.
236///
237/// You may notice that `u16` may represent more than 32,768 values. This is
238/// true, but 32,768 should be plenty and it allows us to reserve the top bit
239/// for future usage.
240type Size = u16;
241
242/// This limit falls out from above.
243const MAX_SIZE: usize = 1 << 15;
244
245/// An entry in the hash table. This represents the full hash code for an entry
246/// as well as the position of the entry in the `entries` vector.
247#[derive(Copy, Clone)]
248struct Pos {
249 // Index in the `entries` vec
250 index: Size,
251 // Full hash value for the entry.
252 hash: HashValue,
253}
254
255/// Hash values are limited to u16 as well. While `fast_hash` and `Hasher`
256/// return `usize` hash codes, limiting the effective hash code to the lower 16
257/// bits is fine since we know that the `indices` vector will never grow beyond
258/// that size.
259#[derive(Debug, Copy, Clone, Eq, PartialEq)]
260struct HashValue(u16);
261
262/// Stores the data associated with a `HeaderMap` entry. Only the first value is
263/// included in this struct. If a header name has more than one associated
264/// value, all extra values are stored in the `extra_values` vector. A doubly
265/// linked list of entries is maintained. The doubly linked list is used so that
266/// removing a value is constant time. This also has the nice property of
267/// enabling double ended iteration.
268#[derive(Debug, Clone)]
269struct Bucket<T> {
270 hash: HashValue,
271 key: HeaderName,
272 value: T,
273 links: Option<Links>,
274}
275
276/// The head and tail of the value linked list.
277#[derive(Debug, Copy, Clone)]
278struct Links {
279 next: usize,
280 tail: usize,
281}
282
283/// Access to the `links` value in a slice of buckets.
284///
285/// It's important that no other field is accessed, since it may have been
286/// freed in a `Drain` iterator.
287#[derive(Debug)]
288struct RawLinks<T>(*mut [Bucket<T>]);
289
290/// Node in doubly-linked list of header value entries
291#[derive(Debug, Clone)]
292struct ExtraValue<T> {
293 value: T,
294 prev: Link,
295 next: Link,
296}
297
298/// A header value node is either linked to another node in the `extra_values`
299/// list or it points to an entry in `entries`. The entry in `entries` is the
300/// start of the list and holds the associated header name.
301#[derive(Debug, Copy, Clone, Eq, PartialEq)]
302enum Link {
303 Entry(usize),
304 Extra(usize),
305}
306
307/// Tracks the header map danger level! This relates to the adaptive hashing
308/// algorithm. A HeaderMap starts in the "green" state, when a large number of
309/// collisions are detected, it transitions to the yellow state. At this point,
310/// the header map will either grow and switch back to the green state OR it
311/// will transition to the red state.
312///
313/// When in the red state, a safe hashing algorithm is used and all values in
314/// the header map have to be rehashed.
315#[derive(Clone)]
316enum Danger {
317 Green,
318 Yellow,
319 Red(RandomState),
320}
321
322// Constants related to detecting DOS attacks.
323//
324// Displacement is the number of entries that get shifted when inserting a new
325// value. Forward shift is how far the entry gets stored from the ideal
326// position.
327//
328// The current constant values were picked from another implementation. It could
329// be that there are different values better suited to the header map case.
330const DISPLACEMENT_THRESHOLD: usize = 128;
331const FORWARD_SHIFT_THRESHOLD: usize = 512;
332
333// The default strategy for handling the yellow danger state is to increase the
334// header map capacity in order to (hopefully) reduce the number of collisions.
335// If growing the hash map would cause the load factor to drop bellow this
336// threshold, then instead of growing, the headermap is switched to the red
337// danger state and safe hashing is used instead.
338const LOAD_FACTOR_THRESHOLD: f32 = 0.2;
339
340// Macro used to iterate the hash table starting at a given point, looping when
341// the end is hit.
342macro_rules! probe_loop {
343 ($label:tt: $probe_var: ident < $len: expr, $body: expr) => {
344 debug_assert!($len > 0);
345 $label:
346 loop {
347 if $probe_var < $len {
348 $body
349 $probe_var += 1;
350 } else {
351 $probe_var = 0;
352 }
353 }
354 };
355 ($probe_var: ident < $len: expr, $body: expr) => {
356 debug_assert!($len > 0);
357 loop {
358 if $probe_var < $len {
359 $body
360 $probe_var += 1;
361 } else {
362 $probe_var = 0;
363 }
364 }
365 };
366}
367
368// First part of the robinhood algorithm. Given a key, find the slot in which it
369// will be inserted. This is done by starting at the "ideal" spot. Then scanning
370// until the destination slot is found. A destination slot is either the next
371// empty slot or the next slot that is occupied by an entry that has a lower
372// displacement (displacement is the distance from the ideal spot).
373//
374// This is implemented as a macro instead of a function that takes a closure in
375// order to guarantee that it is "inlined". There is no way to annotate closures
376// to guarantee inlining.
377macro_rules! insert_phase_one {
378 ($map:ident,
379 $key:expr,
380 $probe:ident,
381 $pos:ident,
382 $hash:ident,
383 $danger:ident,
384 $vacant:expr,
385 $occupied:expr,
386 $robinhood:expr) =>
387 {{
388 let $hash = hash_elem_using(&$map.danger, &$key);
389 let mut $probe = desired_pos($map.mask, $hash);
390 let mut dist = 0;
391 let ret;
392
393 // Start at the ideal position, checking all slots
394 probe_loop!('probe: $probe < $map.indices.len(), {
395 if let Some(($pos, entry_hash)) = $map.indices[$probe].resolve() {
396 // The slot is already occupied, but check if it has a lower
397 // displacement.
398 let their_dist = probe_distance($map.mask, entry_hash, $probe);
399
400 if their_dist < dist {
401 // The new key's distance is larger, so claim this spot and
402 // displace the current entry.
403 //
404 // Check if this insertion is above the danger threshold.
405 let $danger =
406 dist >= FORWARD_SHIFT_THRESHOLD && !$map.danger.is_red();
407
408 ret = $robinhood;
409 break 'probe;
410 } else if entry_hash == $hash && $map.entries[$pos].key == $key {
411 // There already is an entry with the same key.
412 ret = $occupied;
413 break 'probe;
414 }
415 } else {
416 // The entry is vacant, use it for this key.
417 let $danger =
418 dist >= FORWARD_SHIFT_THRESHOLD && !$map.danger.is_red();
419
420 ret = $vacant;
421 break 'probe;
422 }
423
424 dist += 1;
425 });
426
427 ret
428 }}
429}
430
431// ===== impl HeaderMap =====
432
433impl HeaderMap {
434 /// Create an empty `HeaderMap`.
435 ///
436 /// The map will be created without any capacity. This function will not
437 /// allocate.
438 ///
439 /// # Examples
440 ///
441 /// ```
442 /// # use http::HeaderMap;
443 /// let map = HeaderMap::new();
444 ///
445 /// assert!(map.is_empty());
446 /// assert_eq!(0, map.capacity());
447 /// ```
448 pub fn new() -> Self {
449 HeaderMap::try_with_capacity(0).unwrap()
450 }
451}
452
453impl<T> HeaderMap<T> {
454 /// Create an empty `HeaderMap` with the specified capacity.
455 ///
456 /// The returned map will allocate internal storage in order to hold about
457 /// `capacity` elements without reallocating. However, this is a "best
458 /// effort" as there are usage patterns that could cause additional
459 /// allocations before `capacity` headers are stored in the map.
460 ///
461 /// More capacity than requested may be allocated.
462 ///
463 /// # Panics
464 ///
465 /// This method panics if capacity exceeds max `HeaderMap` capacity.
466 ///
467 /// # Examples
468 ///
469 /// ```
470 /// # use http::HeaderMap;
471 /// let map: HeaderMap<u32> = HeaderMap::with_capacity(10);
472 ///
473 /// assert!(map.is_empty());
474 /// assert_eq!(12, map.capacity());
475 /// ```
476 pub fn with_capacity(capacity: usize) -> HeaderMap<T> {
477 Self::try_with_capacity(capacity).expect("size overflows MAX_SIZE")
478 }
479
480 /// Create an empty `HeaderMap` with the specified capacity.
481 ///
482 /// The returned map will allocate internal storage in order to hold about
483 /// `capacity` elements without reallocating. However, this is a "best
484 /// effort" as there are usage patterns that could cause additional
485 /// allocations before `capacity` headers are stored in the map.
486 ///
487 /// More capacity than requested may be allocated.
488 ///
489 /// # Errors
490 ///
491 /// This function may return an error if `HeaderMap` exceeds max capacity
492 ///
493 /// # Examples
494 ///
495 /// ```
496 /// # use http::HeaderMap;
497 /// let map: HeaderMap<u32> = HeaderMap::try_with_capacity(10).unwrap();
498 ///
499 /// assert!(map.is_empty());
500 /// assert_eq!(12, map.capacity());
501 /// ```
502 pub fn try_with_capacity(capacity: usize) -> Result<HeaderMap<T>, MaxSizeReached> {
503 if capacity == 0 {
504 Ok(HeaderMap {
505 mask: 0,
506 indices: Box::new([]), // as a ZST, this doesn't actually allocate anything
507 entries: Vec::new(),
508 extra_values: Vec::new(),
509 danger: Danger::Green,
510 })
511 } else {
512 let raw_cap = match to_raw_capacity(capacity).checked_next_power_of_two() {
513 Some(c) => c,
514 None => return Err(MaxSizeReached { _priv: () }),
515 };
516 if raw_cap > MAX_SIZE {
517 return Err(MaxSizeReached { _priv: () });
518 }
519 debug_assert!(raw_cap > 0);
520
521 Ok(HeaderMap {
522 mask: (raw_cap - 1) as Size,
523 indices: vec![Pos::none(); raw_cap].into_boxed_slice(),
524 entries: Vec::with_capacity(usable_capacity(raw_cap)),
525 extra_values: Vec::new(),
526 danger: Danger::Green,
527 })
528 }
529 }
530
531 /// Returns the number of headers stored in the map.
532 ///
533 /// This number represents the total number of **values** stored in the map.
534 /// This number can be greater than or equal to the number of **keys**
535 /// stored given that a single key may have more than one associated value.
536 ///
537 /// # Examples
538 ///
539 /// ```
540 /// # use http::HeaderMap;
541 /// # use http::header::{ACCEPT, HOST};
542 /// let mut map = HeaderMap::new();
543 ///
544 /// assert_eq!(0, map.len());
545 ///
546 /// map.insert(ACCEPT, "text/plain".parse().unwrap());
547 /// map.insert(HOST, "localhost".parse().unwrap());
548 ///
549 /// assert_eq!(2, map.len());
550 ///
551 /// map.append(ACCEPT, "text/html".parse().unwrap());
552 ///
553 /// assert_eq!(3, map.len());
554 /// ```
555 pub fn len(&self) -> usize {
556 self.entries.len() + self.extra_values.len()
557 }
558
559 /// Returns the number of keys stored in the map.
560 ///
561 /// This number will be less than or equal to `len()` as each key may have
562 /// more than one associated value.
563 ///
564 /// # Examples
565 ///
566 /// ```
567 /// # use http::HeaderMap;
568 /// # use http::header::{ACCEPT, HOST};
569 /// let mut map = HeaderMap::new();
570 ///
571 /// assert_eq!(0, map.keys_len());
572 ///
573 /// map.insert(ACCEPT, "text/plain".parse().unwrap());
574 /// map.insert(HOST, "localhost".parse().unwrap());
575 ///
576 /// assert_eq!(2, map.keys_len());
577 ///
578 /// map.insert(ACCEPT, "text/html".parse().unwrap());
579 ///
580 /// assert_eq!(2, map.keys_len());
581 /// ```
582 pub fn keys_len(&self) -> usize {
583 self.entries.len()
584 }
585
586 /// Returns true if the map contains no elements.
587 ///
588 /// # Examples
589 ///
590 /// ```
591 /// # use http::HeaderMap;
592 /// # use http::header::HOST;
593 /// let mut map = HeaderMap::new();
594 ///
595 /// assert!(map.is_empty());
596 ///
597 /// map.insert(HOST, "hello.world".parse().unwrap());
598 ///
599 /// assert!(!map.is_empty());
600 /// ```
601 pub fn is_empty(&self) -> bool {
602 self.entries.len() == 0
603 }
604
605 /// Clears the map, removing all key-value pairs. Keeps the allocated memory
606 /// for reuse.
607 ///
608 /// # Examples
609 ///
610 /// ```
611 /// # use http::HeaderMap;
612 /// # use http::header::HOST;
613 /// let mut map = HeaderMap::new();
614 /// map.insert(HOST, "hello.world".parse().unwrap());
615 ///
616 /// map.clear();
617 /// assert!(map.is_empty());
618 /// assert!(map.capacity() > 0);
619 /// ```
620 pub fn clear(&mut self) {
621 self.entries.clear();
622 self.extra_values.clear();
623 self.danger = Danger::Green;
624
625 for e in self.indices.iter_mut() {
626 *e = Pos::none();
627 }
628 }
629
630 /// Returns the number of headers the map can hold without reallocating.
631 ///
632 /// This number is an approximation as certain usage patterns could cause
633 /// additional allocations before the returned capacity is filled.
634 ///
635 /// # Examples
636 ///
637 /// ```
638 /// # use http::HeaderMap;
639 /// # use http::header::HOST;
640 /// let mut map = HeaderMap::new();
641 ///
642 /// assert_eq!(0, map.capacity());
643 ///
644 /// map.insert(HOST, "hello.world".parse().unwrap());
645 /// assert_eq!(6, map.capacity());
646 /// ```
647 pub fn capacity(&self) -> usize {
648 usable_capacity(self.indices.len())
649 }
650
651 /// Reserves capacity for at least `additional` more headers to be inserted
652 /// into the `HeaderMap`.
653 ///
654 /// The header map may reserve more space to avoid frequent reallocations.
655 /// Like with `with_capacity`, this will be a "best effort" to avoid
656 /// allocations until `additional` more headers are inserted. Certain usage
657 /// patterns could cause additional allocations before the number is
658 /// reached.
659 ///
660 /// # Panics
661 ///
662 /// Panics if the new allocation size overflows `HeaderMap` `MAX_SIZE`.
663 ///
664 /// # Examples
665 ///
666 /// ```
667 /// # use http::HeaderMap;
668 /// # use http::header::HOST;
669 /// let mut map = HeaderMap::new();
670 /// map.reserve(10);
671 /// # map.insert(HOST, "bar".parse().unwrap());
672 /// ```
673 pub fn reserve(&mut self, additional: usize) {
674 self.try_reserve(additional)
675 .expect("size overflows MAX_SIZE")
676 }
677
678 /// Reserves capacity for at least `additional` more headers to be inserted
679 /// into the `HeaderMap`.
680 ///
681 /// The header map may reserve more space to avoid frequent reallocations.
682 /// Like with `with_capacity`, this will be a "best effort" to avoid
683 /// allocations until `additional` more headers are inserted. Certain usage
684 /// patterns could cause additional allocations before the number is
685 /// reached.
686 ///
687 /// # Errors
688 ///
689 /// This method differs from `reserve` by returning an error instead of
690 /// panicking if the value is too large.
691 ///
692 /// # Examples
693 ///
694 /// ```
695 /// # use http::HeaderMap;
696 /// # use http::header::HOST;
697 /// let mut map = HeaderMap::new();
698 /// map.try_reserve(10).unwrap();
699 /// # map.try_insert(HOST, "bar".parse().unwrap()).unwrap();
700 /// ```
701 pub fn try_reserve(&mut self, additional: usize) -> Result<(), MaxSizeReached> {
702 // TODO: This can't overflow if done properly... since the max # of
703 // elements is u16::MAX.
704 let cap = self
705 .entries
706 .len()
707 .checked_add(additional)
708 .ok_or_else(MaxSizeReached::new)?;
709
710 if cap > self.indices.len() {
711 let cap = cap
712 .checked_next_power_of_two()
713 .ok_or_else(MaxSizeReached::new)?;
714 if cap > MAX_SIZE {
715 return Err(MaxSizeReached::new());
716 }
717
718 if self.entries.is_empty() {
719 self.mask = cap as Size - 1;
720 self.indices = vec![Pos::none(); cap].into_boxed_slice();
721 self.entries = Vec::with_capacity(usable_capacity(cap));
722 } else {
723 self.try_grow(cap)?;
724 }
725 }
726
727 Ok(())
728 }
729
730 /// Returns a reference to the value associated with the key.
731 ///
732 /// If there are multiple values associated with the key, then the first one
733 /// is returned. Use `get_all` to get all values associated with a given
734 /// key. Returns `None` if there are no values associated with the key.
735 ///
736 /// # Examples
737 ///
738 /// ```
739 /// # use http::HeaderMap;
740 /// # use http::header::HOST;
741 /// let mut map = HeaderMap::new();
742 /// assert!(map.get("host").is_none());
743 ///
744 /// map.insert(HOST, "hello".parse().unwrap());
745 /// assert_eq!(map.get(HOST).unwrap(), &"hello");
746 /// assert_eq!(map.get("host").unwrap(), &"hello");
747 ///
748 /// map.append(HOST, "world".parse().unwrap());
749 /// assert_eq!(map.get("host").unwrap(), &"hello");
750 /// ```
751 pub fn get<K>(&self, key: K) -> Option<&T>
752 where
753 K: AsHeaderName,
754 {
755 self.get2(&key)
756 }
757
758 fn get2<K>(&self, key: &K) -> Option<&T>
759 where
760 K: AsHeaderName,
761 {
762 match key.find(self) {
763 Some((_, found)) => {
764 let entry = &self.entries[found];
765 Some(&entry.value)
766 }
767 None => None,
768 }
769 }
770
771 /// Returns a mutable reference to the value associated with the key.
772 ///
773 /// If there are multiple values associated with the key, then the first one
774 /// is returned. Use `entry` to get all values associated with a given
775 /// key. Returns `None` if there are no values associated with the key.
776 ///
777 /// # Examples
778 ///
779 /// ```
780 /// # use http::HeaderMap;
781 /// # use http::header::HOST;
782 /// let mut map = HeaderMap::default();
783 /// map.insert(HOST, "hello".to_string());
784 /// map.get_mut("host").unwrap().push_str("-world");
785 ///
786 /// assert_eq!(map.get(HOST).unwrap(), &"hello-world");
787 /// ```
788 pub fn get_mut<K>(&mut self, key: K) -> Option<&mut T>
789 where
790 K: AsHeaderName,
791 {
792 match key.find(self) {
793 Some((_, found)) => {
794 let entry = &mut self.entries[found];
795 Some(&mut entry.value)
796 }
797 None => None,
798 }
799 }
800
801 /// Returns a view of all values associated with a key.
802 ///
803 /// The returned view does not incur any allocations and allows iterating
804 /// the values associated with the key. See [`GetAll`] for more details.
805 /// Returns `None` if there are no values associated with the key.
806 ///
807 /// [`GetAll`]: struct.GetAll.html
808 ///
809 /// # Examples
810 ///
811 /// ```
812 /// # use http::HeaderMap;
813 /// # use http::header::HOST;
814 /// let mut map = HeaderMap::new();
815 ///
816 /// map.insert(HOST, "hello".parse().unwrap());
817 /// map.append(HOST, "goodbye".parse().unwrap());
818 ///
819 /// let view = map.get_all("host");
820 ///
821 /// let mut iter = view.iter();
822 /// assert_eq!(&"hello", iter.next().unwrap());
823 /// assert_eq!(&"goodbye", iter.next().unwrap());
824 /// assert!(iter.next().is_none());
825 /// ```
826 pub fn get_all<K>(&self, key: K) -> GetAll<'_, T>
827 where
828 K: AsHeaderName,
829 {
830 GetAll {
831 map: self,
832 index: key.find(self).map(|(_, i)| i),
833 }
834 }
835
836 /// Returns true if the map contains a value for the specified key.
837 ///
838 /// # Examples
839 ///
840 /// ```
841 /// # use http::HeaderMap;
842 /// # use http::header::HOST;
843 /// let mut map = HeaderMap::new();
844 /// assert!(!map.contains_key(HOST));
845 ///
846 /// map.insert(HOST, "world".parse().unwrap());
847 /// assert!(map.contains_key("host"));
848 /// ```
849 pub fn contains_key<K>(&self, key: K) -> bool
850 where
851 K: AsHeaderName,
852 {
853 key.find(self).is_some()
854 }
855
856 /// An iterator visiting all key-value pairs.
857 ///
858 /// The iteration order is arbitrary, but consistent across platforms for
859 /// the same crate version. Each key will be yielded once per associated
860 /// value. So, if a key has 3 associated values, it will be yielded 3 times.
861 ///
862 /// # Examples
863 ///
864 /// ```
865 /// # use http::HeaderMap;
866 /// # use http::header::{CONTENT_LENGTH, HOST};
867 /// let mut map = HeaderMap::new();
868 ///
869 /// map.insert(HOST, "hello".parse().unwrap());
870 /// map.append(HOST, "goodbye".parse().unwrap());
871 /// map.insert(CONTENT_LENGTH, "123".parse().unwrap());
872 ///
873 /// for (key, value) in map.iter() {
874 /// println!("{:?}: {:?}", key, value);
875 /// }
876 /// ```
877 pub fn iter(&self) -> Iter<'_, T> {
878 Iter {
879 map: self,
880 entry: 0,
881 cursor: self.entries.first().map(|_| Cursor::Head),
882 }
883 }
884
885 /// An iterator visiting all key-value pairs, with mutable value references.
886 ///
887 /// The iterator order is arbitrary, but consistent across platforms for the
888 /// same crate version. Each key will be yielded once per associated value,
889 /// so if a key has 3 associated values, it will be yielded 3 times.
890 ///
891 /// # Examples
892 ///
893 /// ```
894 /// # use http::HeaderMap;
895 /// # use http::header::{CONTENT_LENGTH, HOST};
896 /// let mut map = HeaderMap::default();
897 ///
898 /// map.insert(HOST, "hello".to_string());
899 /// map.append(HOST, "goodbye".to_string());
900 /// map.insert(CONTENT_LENGTH, "123".to_string());
901 ///
902 /// for (key, value) in map.iter_mut() {
903 /// value.push_str("-boop");
904 /// }
905 /// ```
906 pub fn iter_mut(&mut self) -> IterMut<'_, T> {
907 IterMut {
908 map: self as *mut _,
909 entry: 0,
910 cursor: self.entries.first().map(|_| Cursor::Head),
911 lt: PhantomData,
912 }
913 }
914
915 /// An iterator visiting all keys.
916 ///
917 /// The iteration order is arbitrary, but consistent across platforms for
918 /// the same crate version. Each key will be yielded only once even if it
919 /// has multiple associated values.
920 ///
921 /// # Examples
922 ///
923 /// ```
924 /// # use http::HeaderMap;
925 /// # use http::header::{CONTENT_LENGTH, HOST};
926 /// let mut map = HeaderMap::new();
927 ///
928 /// map.insert(HOST, "hello".parse().unwrap());
929 /// map.append(HOST, "goodbye".parse().unwrap());
930 /// map.insert(CONTENT_LENGTH, "123".parse().unwrap());
931 ///
932 /// for key in map.keys() {
933 /// println!("{:?}", key);
934 /// }
935 /// ```
936 pub fn keys(&self) -> Keys<'_, T> {
937 Keys {
938 inner: self.entries.iter(),
939 }
940 }
941
942 /// An iterator visiting all values.
943 ///
944 /// The iteration order is arbitrary, but consistent across platforms for
945 /// the same crate version.
946 ///
947 /// # Examples
948 ///
949 /// ```
950 /// # use http::HeaderMap;
951 /// # use http::header::{CONTENT_LENGTH, HOST};
952 /// let mut map = HeaderMap::new();
953 ///
954 /// map.insert(HOST, "hello".parse().unwrap());
955 /// map.append(HOST, "goodbye".parse().unwrap());
956 /// map.insert(CONTENT_LENGTH, "123".parse().unwrap());
957 ///
958 /// for value in map.values() {
959 /// println!("{:?}", value);
960 /// }
961 /// ```
962 pub fn values(&self) -> Values<'_, T> {
963 Values { inner: self.iter() }
964 }
965
966 /// An iterator visiting all values mutably.
967 ///
968 /// The iteration order is arbitrary, but consistent across platforms for
969 /// the same crate version.
970 ///
971 /// # Examples
972 ///
973 /// ```
974 /// # use http::HeaderMap;
975 /// # use http::header::{CONTENT_LENGTH, HOST};
976 /// let mut map = HeaderMap::default();
977 ///
978 /// map.insert(HOST, "hello".to_string());
979 /// map.append(HOST, "goodbye".to_string());
980 /// map.insert(CONTENT_LENGTH, "123".to_string());
981 ///
982 /// for value in map.values_mut() {
983 /// value.push_str("-boop");
984 /// }
985 /// ```
986 pub fn values_mut(&mut self) -> ValuesMut<'_, T> {
987 ValuesMut {
988 inner: self.iter_mut(),
989 }
990 }
991
992 /// Clears the map, returning all entries as an iterator.
993 ///
994 /// The internal memory is kept for reuse.
995 ///
996 /// For each yielded item that has `None` provided for the `HeaderName`,
997 /// then the associated header name is the same as that of the previously
998 /// yielded item. The first yielded item will have `HeaderName` set.
999 ///
1000 /// # Examples
1001 ///
1002 /// ```
1003 /// # use http::HeaderMap;
1004 /// # use http::header::{CONTENT_LENGTH, HOST};
1005 /// let mut map = HeaderMap::new();
1006 ///
1007 /// map.insert(HOST, "hello".parse().unwrap());
1008 /// map.append(HOST, "goodbye".parse().unwrap());
1009 /// map.insert(CONTENT_LENGTH, "123".parse().unwrap());
1010 ///
1011 /// let mut drain = map.drain();
1012 ///
1013 ///
1014 /// assert_eq!(drain.next(), Some((Some(HOST), "hello".parse().unwrap())));
1015 /// assert_eq!(drain.next(), Some((None, "goodbye".parse().unwrap())));
1016 ///
1017 /// assert_eq!(drain.next(), Some((Some(CONTENT_LENGTH), "123".parse().unwrap())));
1018 ///
1019 /// assert_eq!(drain.next(), None);
1020 /// ```
1021 pub fn drain(&mut self) -> Drain<'_, T> {
1022 for i in self.indices.iter_mut() {
1023 *i = Pos::none();
1024 }
1025
1026 // Memory safety
1027 //
1028 // When the Drain is first created, it shortens the length of
1029 // the source vector to make sure no uninitialized or moved-from
1030 // elements are accessible at all if the Drain's destructor never
1031 // gets to run.
1032
1033 let entries = &mut self.entries[..] as *mut _;
1034 let extra_values = &mut self.extra_values as *mut _;
1035 let len = self.entries.len();
1036 unsafe {
1037 self.entries.set_len(0);
1038 }
1039
1040 Drain {
1041 idx: 0,
1042 len,
1043 entries,
1044 extra_values,
1045 next: None,
1046 lt: PhantomData,
1047 }
1048 }
1049
1050 fn value_iter(&self, idx: Option<usize>) -> ValueIter<'_, T> {
1051 use self::Cursor::*;
1052
1053 if let Some(idx) = idx {
1054 let back = {
1055 let entry = &self.entries[idx];
1056
1057 entry.links.map(|l| Values(l.tail)).unwrap_or(Head)
1058 };
1059
1060 ValueIter {
1061 map: self,
1062 index: idx,
1063 front: Some(Head),
1064 back: Some(back),
1065 }
1066 } else {
1067 ValueIter {
1068 map: self,
1069 index: usize::MAX,
1070 front: None,
1071 back: None,
1072 }
1073 }
1074 }
1075
1076 fn value_iter_mut(&mut self, idx: usize) -> ValueIterMut<'_, T> {
1077 use self::Cursor::*;
1078
1079 let back = {
1080 let entry = &self.entries[idx];
1081
1082 entry.links.map(|l| Values(l.tail)).unwrap_or(Head)
1083 };
1084
1085 ValueIterMut {
1086 map: self as *mut _,
1087 index: idx,
1088 front: Some(Head),
1089 back: Some(back),
1090 lt: PhantomData,
1091 }
1092 }
1093
1094 /// Gets the given key's corresponding entry in the map for in-place
1095 /// manipulation.
1096 ///
1097 /// # Panics
1098 ///
1099 /// This method panics if capacity exceeds max `HeaderMap` capacity
1100 ///
1101 /// # Examples
1102 ///
1103 /// ```
1104 /// # use http::HeaderMap;
1105 /// let mut map: HeaderMap<u32> = HeaderMap::default();
1106 ///
1107 /// let headers = &[
1108 /// "content-length",
1109 /// "x-hello",
1110 /// "Content-Length",
1111 /// "x-world",
1112 /// ];
1113 ///
1114 /// for &header in headers {
1115 /// let counter = map.entry(header).or_insert(0);
1116 /// *counter += 1;
1117 /// }
1118 ///
1119 /// assert_eq!(map["content-length"], 2);
1120 /// assert_eq!(map["x-hello"], 1);
1121 /// ```
1122 pub fn entry<K>(&mut self, key: K) -> Entry<'_, T>
1123 where
1124 K: IntoHeaderName,
1125 {
1126 key.try_entry(self).expect("size overflows MAX_SIZE")
1127 }
1128
1129 /// Gets the given key's corresponding entry in the map for in-place
1130 /// manipulation.
1131 ///
1132 /// # Errors
1133 ///
1134 /// This method differs from `entry` by allowing types that may not be
1135 /// valid `HeaderName`s to passed as the key (such as `String`). If they
1136 /// do not parse as a valid `HeaderName`, this returns an
1137 /// `InvalidHeaderName` error.
1138 ///
1139 /// If reserving space goes over the maximum, this will also return an
1140 /// error. However, to prevent breaking changes to the return type, the
1141 /// error will still say `InvalidHeaderName`, unlike other `try_*` methods
1142 /// which return a `MaxSizeReached` error.
1143 pub fn try_entry<K>(&mut self, key: K) -> Result<Entry<'_, T>, InvalidHeaderName>
1144 where
1145 K: AsHeaderName,
1146 {
1147 key.try_entry(self).map_err(|err| match err {
1148 as_header_name::TryEntryError::InvalidHeaderName(e) => e,
1149 as_header_name::TryEntryError::MaxSizeReached(_e) => {
1150 // Unfortunately, we cannot change the return type of this
1151 // method, so the max size reached error needs to be converted
1152 // into an InvalidHeaderName. Yay.
1153 InvalidHeaderName::new()
1154 }
1155 })
1156 }
1157
1158 fn try_entry2<K>(&mut self, key: K) -> Result<Entry<'_, T>, MaxSizeReached>
1159 where
1160 K: Hash + Into<HeaderName>,
1161 HeaderName: PartialEq<K>,
1162 {
1163 // Ensure that there is space in the map
1164 self.try_reserve_one()?;
1165
1166 Ok(insert_phase_one!(
1167 self,
1168 key,
1169 probe,
1170 pos,
1171 hash,
1172 danger,
1173 Entry::Vacant(VacantEntry {
1174 map: self,
1175 hash,
1176 key: key.into(),
1177 probe,
1178 danger,
1179 }),
1180 Entry::Occupied(OccupiedEntry {
1181 map: self,
1182 index: pos,
1183 probe,
1184 }),
1185 Entry::Vacant(VacantEntry {
1186 map: self,
1187 hash,
1188 key: key.into(),
1189 probe,
1190 danger,
1191 })
1192 ))
1193 }
1194
1195 /// Inserts a key-value pair into the map.
1196 ///
1197 /// If the map did not previously have this key present, then `None` is
1198 /// returned.
1199 ///
1200 /// If the map did have this key present, the new value is associated with
1201 /// the key and all previous values are removed. **Note** that only a single
1202 /// one of the previous values is returned. If there are multiple values
1203 /// that have been previously associated with the key, then the first one is
1204 /// returned. See `insert_mult` on `OccupiedEntry` for an API that returns
1205 /// all values.
1206 ///
1207 /// The key is not updated, though; this matters for types that can be `==`
1208 /// without being identical.
1209 ///
1210 /// # Panics
1211 ///
1212 /// This method panics if capacity exceeds max `HeaderMap` capacity
1213 ///
1214 /// # Examples
1215 ///
1216 /// ```
1217 /// # use http::HeaderMap;
1218 /// # use http::header::HOST;
1219 /// let mut map = HeaderMap::new();
1220 /// assert!(map.insert(HOST, "world".parse().unwrap()).is_none());
1221 /// assert!(!map.is_empty());
1222 ///
1223 /// let mut prev = map.insert(HOST, "earth".parse().unwrap()).unwrap();
1224 /// assert_eq!("world", prev);
1225 /// ```
1226 pub fn insert<K>(&mut self, key: K, val: T) -> Option<T>
1227 where
1228 K: IntoHeaderName,
1229 {
1230 self.try_insert(key, val).expect("size overflows MAX_SIZE")
1231 }
1232
1233 /// Inserts a key-value pair into the map.
1234 ///
1235 /// If the map did not previously have this key present, then `None` is
1236 /// returned.
1237 ///
1238 /// If the map did have this key present, the new value is associated with
1239 /// the key and all previous values are removed. **Note** that only a single
1240 /// one of the previous values is returned. If there are multiple values
1241 /// that have been previously associated with the key, then the first one is
1242 /// returned. See `insert_mult` on `OccupiedEntry` for an API that returns
1243 /// all values.
1244 ///
1245 /// The key is not updated, though; this matters for types that can be `==`
1246 /// without being identical.
1247 ///
1248 /// # Errors
1249 ///
1250 /// This function may return an error if `HeaderMap` exceeds max capacity
1251 ///
1252 /// # Examples
1253 ///
1254 /// ```
1255 /// # use http::HeaderMap;
1256 /// # use http::header::HOST;
1257 /// let mut map = HeaderMap::new();
1258 /// assert!(map.try_insert(HOST, "world".parse().unwrap()).unwrap().is_none());
1259 /// assert!(!map.is_empty());
1260 ///
1261 /// let mut prev = map.try_insert(HOST, "earth".parse().unwrap()).unwrap().unwrap();
1262 /// assert_eq!("world", prev);
1263 /// ```
1264 pub fn try_insert<K>(&mut self, key: K, val: T) -> Result<Option<T>, MaxSizeReached>
1265 where
1266 K: IntoHeaderName,
1267 {
1268 key.try_insert(self, val)
1269 }
1270
1271 #[inline]
1272 fn try_insert2<K>(&mut self, key: K, value: T) -> Result<Option<T>, MaxSizeReached>
1273 where
1274 K: Hash + Into<HeaderName>,
1275 HeaderName: PartialEq<K>,
1276 {
1277 self.try_reserve_one()?;
1278
1279 Ok(insert_phase_one!(
1280 self,
1281 key,
1282 probe,
1283 pos,
1284 hash,
1285 danger,
1286 // Vacant
1287 {
1288 let _ = danger; // Make lint happy
1289 let index = self.entries.len();
1290 self.try_insert_entry(hash, key.into(), value)?;
1291 self.indices[probe] = Pos::new(index, hash);
1292 None
1293 },
1294 // Occupied
1295 Some(self.insert_occupied(pos, value)),
1296 // Robinhood
1297 {
1298 self.try_insert_phase_two(key.into(), value, hash, probe, danger)?;
1299 None
1300 }
1301 ))
1302 }
1303
1304 /// Set an occupied bucket to the given value
1305 #[inline]
1306 fn insert_occupied(&mut self, index: usize, value: T) -> T {
1307 if let Some(links) = self.entries[index].links {
1308 self.remove_all_extra_values(links.next);
1309 }
1310
1311 let entry = &mut self.entries[index];
1312 mem::replace(&mut entry.value, value)
1313 }
1314
1315 fn insert_occupied_mult(&mut self, index: usize, value: T) -> ValueDrain<'_, T> {
1316 let old;
1317 let links;
1318
1319 {
1320 let entry = &mut self.entries[index];
1321
1322 old = mem::replace(&mut entry.value, value);
1323 links = entry.links.take();
1324 }
1325
1326 let raw_links = self.raw_links();
1327 let extra_values = &mut self.extra_values;
1328
1329 let next =
1330 links.map(|l| drain_all_extra_values(raw_links, extra_values, l.next).into_iter());
1331
1332 ValueDrain {
1333 first: Some(old),
1334 next,
1335 lt: PhantomData,
1336 }
1337 }
1338
1339 /// Inserts a key-value pair into the map.
1340 ///
1341 /// If the map did not previously have this key present, then `false` is
1342 /// returned.
1343 ///
1344 /// If the map did have this key present, the new value is pushed to the end
1345 /// of the list of values currently associated with the key. The key is not
1346 /// updated, though; this matters for types that can be `==` without being
1347 /// identical.
1348 ///
1349 /// # Panics
1350 ///
1351 /// This method panics if capacity exceeds max `HeaderMap` capacity
1352 ///
1353 /// # Examples
1354 ///
1355 /// ```
1356 /// # use http::HeaderMap;
1357 /// # use http::header::HOST;
1358 /// let mut map = HeaderMap::new();
1359 /// assert!(map.insert(HOST, "world".parse().unwrap()).is_none());
1360 /// assert!(!map.is_empty());
1361 ///
1362 /// map.append(HOST, "earth".parse().unwrap());
1363 ///
1364 /// let values = map.get_all("host");
1365 /// let mut i = values.iter();
1366 /// assert_eq!("world", *i.next().unwrap());
1367 /// assert_eq!("earth", *i.next().unwrap());
1368 /// ```
1369 pub fn append<K>(&mut self, key: K, value: T) -> bool
1370 where
1371 K: IntoHeaderName,
1372 {
1373 self.try_append(key, value)
1374 .expect("size overflows MAX_SIZE")
1375 }
1376
1377 /// Inserts a key-value pair into the map.
1378 ///
1379 /// If the map did not previously have this key present, then `false` is
1380 /// returned.
1381 ///
1382 /// If the map did have this key present, the new value is pushed to the end
1383 /// of the list of values currently associated with the key. The key is not
1384 /// updated, though; this matters for types that can be `==` without being
1385 /// identical.
1386 ///
1387 /// # Errors
1388 ///
1389 /// This function may return an error if `HeaderMap` exceeds max capacity
1390 ///
1391 /// # Examples
1392 ///
1393 /// ```
1394 /// # use http::HeaderMap;
1395 /// # use http::header::HOST;
1396 /// let mut map = HeaderMap::new();
1397 /// assert!(map.try_insert(HOST, "world".parse().unwrap()).unwrap().is_none());
1398 /// assert!(!map.is_empty());
1399 ///
1400 /// map.try_append(HOST, "earth".parse().unwrap()).unwrap();
1401 ///
1402 /// let values = map.get_all("host");
1403 /// let mut i = values.iter();
1404 /// assert_eq!("world", *i.next().unwrap());
1405 /// assert_eq!("earth", *i.next().unwrap());
1406 /// ```
1407 pub fn try_append<K>(&mut self, key: K, value: T) -> Result<bool, MaxSizeReached>
1408 where
1409 K: IntoHeaderName,
1410 {
1411 key.try_append(self, value)
1412 }
1413
1414 #[inline]
1415 fn try_append2<K>(&mut self, key: K, value: T) -> Result<bool, MaxSizeReached>
1416 where
1417 K: Hash + Into<HeaderName>,
1418 HeaderName: PartialEq<K>,
1419 {
1420 self.try_reserve_one()?;
1421
1422 Ok(insert_phase_one!(
1423 self,
1424 key,
1425 probe,
1426 pos,
1427 hash,
1428 danger,
1429 // Vacant
1430 {
1431 let _ = danger;
1432 let index = self.entries.len();
1433 self.try_insert_entry(hash, key.into(), value)?;
1434 self.indices[probe] = Pos::new(index, hash);
1435 false
1436 },
1437 // Occupied
1438 {
1439 append_value(pos, &mut self.entries[pos], &mut self.extra_values, value);
1440 true
1441 },
1442 // Robinhood
1443 {
1444 self.try_insert_phase_two(key.into(), value, hash, probe, danger)?;
1445
1446 false
1447 }
1448 ))
1449 }
1450
1451 #[inline]
1452 fn find<K>(&self, key: &K) -> Option<(usize, usize)>
1453 where
1454 K: Hash + Into<HeaderName> + ?Sized,
1455 HeaderName: PartialEq<K>,
1456 {
1457 if self.entries.is_empty() {
1458 return None;
1459 }
1460
1461 let hash = hash_elem_using(&self.danger, key);
1462 let mask = self.mask;
1463 let mut probe = desired_pos(mask, hash);
1464 let mut dist = 0;
1465
1466 probe_loop!(probe < self.indices.len(), {
1467 if let Some((i, entry_hash)) = self.indices[probe].resolve() {
1468 if dist > probe_distance(mask, entry_hash, probe) {
1469 // give up when probe distance is too long
1470 return None;
1471 } else if entry_hash == hash && self.entries[i].key == *key {
1472 return Some((probe, i));
1473 }
1474 } else {
1475 return None;
1476 }
1477
1478 dist += 1;
1479 });
1480 }
1481
1482 /// phase 2 is post-insert where we forward-shift `Pos` in the indices.
1483 #[inline]
1484 fn try_insert_phase_two(
1485 &mut self,
1486 key: HeaderName,
1487 value: T,
1488 hash: HashValue,
1489 probe: usize,
1490 danger: bool,
1491 ) -> Result<usize, MaxSizeReached> {
1492 // Push the value and get the index
1493 let index = self.entries.len();
1494 self.try_insert_entry(hash, key, value)?;
1495
1496 let num_displaced = do_insert_phase_two(&mut self.indices, probe, Pos::new(index, hash));
1497
1498 if danger || num_displaced >= DISPLACEMENT_THRESHOLD {
1499 // Increase danger level
1500 self.danger.set_yellow();
1501 }
1502
1503 Ok(index)
1504 }
1505
1506 /// Removes a key from the map, returning the value associated with the key.
1507 ///
1508 /// Returns `None` if the map does not contain the key. If there are
1509 /// multiple values associated with the key, then the first one is returned.
1510 /// See `remove_entry_mult` on `OccupiedEntry` for an API that yields all
1511 /// values.
1512 ///
1513 /// # Examples
1514 ///
1515 /// ```
1516 /// # use http::HeaderMap;
1517 /// # use http::header::HOST;
1518 /// let mut map = HeaderMap::new();
1519 /// map.insert(HOST, "hello.world".parse().unwrap());
1520 ///
1521 /// let prev = map.remove(HOST).unwrap();
1522 /// assert_eq!("hello.world", prev);
1523 ///
1524 /// assert!(map.remove(HOST).is_none());
1525 /// ```
1526 pub fn remove<K>(&mut self, key: K) -> Option<T>
1527 where
1528 K: AsHeaderName,
1529 {
1530 match key.find(self) {
1531 Some((probe, idx)) => {
1532 if let Some(links) = self.entries[idx].links {
1533 self.remove_all_extra_values(links.next);
1534 }
1535
1536 let entry = self.remove_found(probe, idx);
1537
1538 Some(entry.value)
1539 }
1540 None => None,
1541 }
1542 }
1543
1544 /// Remove an entry from the map.
1545 ///
1546 /// Warning: To avoid inconsistent state, extra values _must_ be removed
1547 /// for the `found` index (via `remove_all_extra_values` or similar)
1548 /// _before_ this method is called.
1549 #[inline]
1550 fn remove_found(&mut self, probe: usize, found: usize) -> Bucket<T> {
1551 // index `probe` and entry `found` is to be removed
1552 // use swap_remove, but then we need to update the index that points
1553 // to the other entry that has to move
1554 self.indices[probe] = Pos::none();
1555 let entry = self.entries.swap_remove(found);
1556
1557 // correct index that points to the entry that had to swap places
1558 if let Some(entry) = self.entries.get(found) {
1559 // was not last element
1560 // examine new element in `found` and find it in indices
1561 let mut probe = desired_pos(self.mask, entry.hash);
1562
1563 probe_loop!(probe < self.indices.len(), {
1564 if let Some((i, _)) = self.indices[probe].resolve() {
1565 if i >= self.entries.len() {
1566 // found it
1567 self.indices[probe] = Pos::new(found, entry.hash);
1568 break;
1569 }
1570 }
1571 });
1572
1573 // Update links
1574 if let Some(links) = entry.links {
1575 self.extra_values[links.next].prev = Link::Entry(found);
1576 self.extra_values[links.tail].next = Link::Entry(found);
1577 }
1578 }
1579
1580 // backward shift deletion in self.indices
1581 // after probe, shift all non-ideally placed indices backward
1582 if !self.entries.is_empty() {
1583 let mut last_probe = probe;
1584 let mut probe = probe + 1;
1585
1586 probe_loop!(probe < self.indices.len(), {
1587 if let Some((_, entry_hash)) = self.indices[probe].resolve() {
1588 if probe_distance(self.mask, entry_hash, probe) > 0 {
1589 self.indices[last_probe] = self.indices[probe];
1590 self.indices[probe] = Pos::none();
1591 } else {
1592 break;
1593 }
1594 } else {
1595 break;
1596 }
1597
1598 last_probe = probe;
1599 });
1600 }
1601
1602 entry
1603 }
1604
1605 /// Removes the `ExtraValue` at the given index.
1606 #[inline]
1607 fn remove_extra_value(&mut self, idx: usize) -> ExtraValue<T> {
1608 let raw_links = self.raw_links();
1609 remove_extra_value(raw_links, &mut self.extra_values, idx)
1610 }
1611
1612 fn remove_all_extra_values(&mut self, mut head: usize) {
1613 loop {
1614 let extra = self.remove_extra_value(head);
1615
1616 if let Link::Extra(idx) = extra.next {
1617 head = idx;
1618 } else {
1619 break;
1620 }
1621 }
1622 }
1623
1624 #[inline]
1625 fn try_insert_entry(
1626 &mut self,
1627 hash: HashValue,
1628 key: HeaderName,
1629 value: T,
1630 ) -> Result<(), MaxSizeReached> {
1631 if self.entries.len() >= MAX_SIZE {
1632 return Err(MaxSizeReached::new());
1633 }
1634
1635 self.entries.push(Bucket {
1636 hash,
1637 key,
1638 value,
1639 links: None,
1640 });
1641
1642 Ok(())
1643 }
1644
1645 fn rebuild(&mut self) {
1646 // Loop over all entries and re-insert them into the map
1647 'outer: for (index, entry) in self.entries.iter_mut().enumerate() {
1648 let hash = hash_elem_using(&self.danger, &entry.key);
1649 let mut probe = desired_pos(self.mask, hash);
1650 let mut dist = 0;
1651
1652 // Update the entry's hash code
1653 entry.hash = hash;
1654
1655 probe_loop!(probe < self.indices.len(), {
1656 if let Some((_, entry_hash)) = self.indices[probe].resolve() {
1657 // if existing element probed less than us, swap
1658 let their_dist = probe_distance(self.mask, entry_hash, probe);
1659
1660 if their_dist < dist {
1661 // Robinhood
1662 break;
1663 }
1664 } else {
1665 // Vacant slot
1666 self.indices[probe] = Pos::new(index, hash);
1667 continue 'outer;
1668 }
1669
1670 dist += 1;
1671 });
1672
1673 do_insert_phase_two(&mut self.indices, probe, Pos::new(index, hash));
1674 }
1675 }
1676
1677 fn reinsert_entry_in_order(&mut self, pos: Pos) {
1678 if let Some((_, entry_hash)) = pos.resolve() {
1679 // Find first empty bucket and insert there
1680 let mut probe = desired_pos(self.mask, entry_hash);
1681
1682 probe_loop!(probe < self.indices.len(), {
1683 if self.indices[probe].resolve().is_none() {
1684 // empty bucket, insert here
1685 self.indices[probe] = pos;
1686 return;
1687 }
1688 });
1689 }
1690 }
1691
1692 fn try_reserve_one(&mut self) -> Result<(), MaxSizeReached> {
1693 let len = self.entries.len();
1694
1695 if self.danger.is_yellow() {
1696 let load_factor = self.entries.len() as f32 / self.indices.len() as f32;
1697
1698 if load_factor >= LOAD_FACTOR_THRESHOLD {
1699 // Transition back to green danger level
1700 self.danger.set_green();
1701
1702 // Double the capacity
1703 let new_cap = self.indices.len() * 2;
1704
1705 // Grow the capacity
1706 self.try_grow(new_cap)?;
1707 } else {
1708 self.danger.set_red();
1709
1710 // Rebuild hash table
1711 for index in self.indices.iter_mut() {
1712 *index = Pos::none();
1713 }
1714
1715 self.rebuild();
1716 }
1717 } else if len == self.capacity() {
1718 if len == 0 {
1719 let new_raw_cap = 8;
1720 self.mask = 8 - 1;
1721 self.indices = vec![Pos::none(); new_raw_cap].into_boxed_slice();
1722 self.entries = Vec::with_capacity(usable_capacity(new_raw_cap));
1723 } else {
1724 let raw_cap = self.indices.len();
1725 self.try_grow(raw_cap << 1)?;
1726 }
1727 }
1728
1729 Ok(())
1730 }
1731
1732 #[inline]
1733 fn try_grow(&mut self, new_raw_cap: usize) -> Result<(), MaxSizeReached> {
1734 if new_raw_cap > MAX_SIZE {
1735 return Err(MaxSizeReached::new());
1736 }
1737
1738 // find first ideally placed element -- start of cluster
1739 let mut first_ideal = 0;
1740
1741 for (i, pos) in self.indices.iter().enumerate() {
1742 if let Some((_, entry_hash)) = pos.resolve() {
1743 if 0 == probe_distance(self.mask, entry_hash, i) {
1744 first_ideal = i;
1745 break;
1746 }
1747 }
1748 }
1749
1750 // visit the entries in an order where we can simply reinsert them
1751 // into self.indices without any bucket stealing.
1752 let old_indices = mem::replace(
1753 &mut self.indices,
1754 vec![Pos::none(); new_raw_cap].into_boxed_slice(),
1755 );
1756 self.mask = new_raw_cap.wrapping_sub(1) as Size;
1757
1758 for &pos in &old_indices[first_ideal..] {
1759 self.reinsert_entry_in_order(pos);
1760 }
1761
1762 for &pos in &old_indices[..first_ideal] {
1763 self.reinsert_entry_in_order(pos);
1764 }
1765
1766 // Reserve additional entry slots
1767 let more = self.capacity() - self.entries.len();
1768 self.entries.reserve_exact(more);
1769 Ok(())
1770 }
1771
1772 #[inline]
1773 fn raw_links(&mut self) -> RawLinks<T> {
1774 RawLinks(&mut self.entries[..] as *mut _)
1775 }
1776}
1777
1778/// Removes the `ExtraValue` at the given index.
1779#[inline]
1780fn remove_extra_value<T>(
1781 mut raw_links: RawLinks<T>,
1782 extra_values: &mut Vec<ExtraValue<T>>,
1783 idx: usize,
1784) -> ExtraValue<T> {
1785 let prev;
1786 let next;
1787
1788 {
1789 debug_assert!(extra_values.len() > idx);
1790 let extra = &extra_values[idx];
1791 prev = extra.prev;
1792 next = extra.next;
1793 }
1794
1795 // First unlink the extra value
1796 match (prev, next) {
1797 (Link::Entry(prev), Link::Entry(next)) => {
1798 debug_assert_eq!(prev, next);
1799
1800 raw_links[prev] = None;
1801 }
1802 (Link::Entry(prev), Link::Extra(next)) => {
1803 debug_assert!(raw_links[prev].is_some());
1804
1805 raw_links[prev].as_mut().unwrap().next = next;
1806
1807 debug_assert!(extra_values.len() > next);
1808 extra_values[next].prev = Link::Entry(prev);
1809 }
1810 (Link::Extra(prev), Link::Entry(next)) => {
1811 debug_assert!(raw_links[next].is_some());
1812
1813 raw_links[next].as_mut().unwrap().tail = prev;
1814
1815 debug_assert!(extra_values.len() > prev);
1816 extra_values[prev].next = Link::Entry(next);
1817 }
1818 (Link::Extra(prev), Link::Extra(next)) => {
1819 debug_assert!(extra_values.len() > next);
1820 debug_assert!(extra_values.len() > prev);
1821
1822 extra_values[prev].next = Link::Extra(next);
1823 extra_values[next].prev = Link::Extra(prev);
1824 }
1825 }
1826
1827 // Remove the extra value
1828 let mut extra = extra_values.swap_remove(idx);
1829
1830 // This is the index of the value that was moved (possibly `extra`)
1831 let old_idx = extra_values.len();
1832
1833 // Update the links
1834 if extra.prev == Link::Extra(old_idx) {
1835 extra.prev = Link::Extra(idx);
1836 }
1837
1838 if extra.next == Link::Extra(old_idx) {
1839 extra.next = Link::Extra(idx);
1840 }
1841
1842 // Check if another entry was displaced. If it was, then the links
1843 // need to be fixed.
1844 if idx != old_idx {
1845 let next;
1846 let prev;
1847
1848 {
1849 debug_assert!(extra_values.len() > idx);
1850 let moved = &extra_values[idx];
1851 next = moved.next;
1852 prev = moved.prev;
1853 }
1854
1855 // An entry was moved, we have to the links
1856 match prev {
1857 Link::Entry(entry_idx) => {
1858 // It is critical that we do not attempt to read the
1859 // header name or value as that memory may have been
1860 // "released" already.
1861 debug_assert!(raw_links[entry_idx].is_some());
1862
1863 let links = raw_links[entry_idx].as_mut().unwrap();
1864 links.next = idx;
1865 }
1866 Link::Extra(extra_idx) => {
1867 debug_assert!(extra_values.len() > extra_idx);
1868 extra_values[extra_idx].next = Link::Extra(idx);
1869 }
1870 }
1871
1872 match next {
1873 Link::Entry(entry_idx) => {
1874 debug_assert!(raw_links[entry_idx].is_some());
1875
1876 let links = raw_links[entry_idx].as_mut().unwrap();
1877 links.tail = idx;
1878 }
1879 Link::Extra(extra_idx) => {
1880 debug_assert!(extra_values.len() > extra_idx);
1881 extra_values[extra_idx].prev = Link::Extra(idx);
1882 }
1883 }
1884 }
1885
1886 debug_assert!({
1887 for v in &*extra_values {
1888 assert!(v.next != Link::Extra(old_idx));
1889 assert!(v.prev != Link::Extra(old_idx));
1890 }
1891
1892 true
1893 });
1894
1895 extra
1896}
1897
1898fn drain_all_extra_values<T>(
1899 raw_links: RawLinks<T>,
1900 extra_values: &mut Vec<ExtraValue<T>>,
1901 mut head: usize,
1902) -> Vec<T> {
1903 let mut vec = Vec::new();
1904 loop {
1905 let extra = remove_extra_value(raw_links, extra_values, head);
1906 vec.push(extra.value);
1907
1908 if let Link::Extra(idx) = extra.next {
1909 head = idx;
1910 } else {
1911 break;
1912 }
1913 }
1914 vec
1915}
1916
1917impl<'a, T> IntoIterator for &'a HeaderMap<T> {
1918 type Item = (&'a HeaderName, &'a T);
1919 type IntoIter = Iter<'a, T>;
1920
1921 fn into_iter(self) -> Iter<'a, T> {
1922 self.iter()
1923 }
1924}
1925
1926impl<'a, T> IntoIterator for &'a mut HeaderMap<T> {
1927 type Item = (&'a HeaderName, &'a mut T);
1928 type IntoIter = IterMut<'a, T>;
1929
1930 fn into_iter(self) -> IterMut<'a, T> {
1931 self.iter_mut()
1932 }
1933}
1934
1935impl<T> IntoIterator for HeaderMap<T> {
1936 type Item = (Option<HeaderName>, T);
1937 type IntoIter = IntoIter<T>;
1938
1939 /// Creates a consuming iterator, that is, one that moves keys and values
1940 /// out of the map in arbitrary order. The map cannot be used after calling
1941 /// this.
1942 ///
1943 /// For each yielded item that has `None` provided for the `HeaderName`,
1944 /// then the associated header name is the same as that of the previously
1945 /// yielded item. The first yielded item will have `HeaderName` set.
1946 ///
1947 /// # Examples
1948 ///
1949 /// Basic usage.
1950 ///
1951 /// ```
1952 /// # use http::header;
1953 /// # use http::header::*;
1954 /// let mut map = HeaderMap::new();
1955 /// map.insert(header::CONTENT_LENGTH, "123".parse().unwrap());
1956 /// map.insert(header::CONTENT_TYPE, "json".parse().unwrap());
1957 ///
1958 /// let mut iter = map.into_iter();
1959 /// assert_eq!(iter.next(), Some((Some(header::CONTENT_LENGTH), "123".parse().unwrap())));
1960 /// assert_eq!(iter.next(), Some((Some(header::CONTENT_TYPE), "json".parse().unwrap())));
1961 /// assert!(iter.next().is_none());
1962 /// ```
1963 ///
1964 /// Multiple values per key.
1965 ///
1966 /// ```
1967 /// # use http::header;
1968 /// # use http::header::*;
1969 /// let mut map = HeaderMap::new();
1970 ///
1971 /// map.append(header::CONTENT_LENGTH, "123".parse().unwrap());
1972 /// map.append(header::CONTENT_LENGTH, "456".parse().unwrap());
1973 ///
1974 /// map.append(header::CONTENT_TYPE, "json".parse().unwrap());
1975 /// map.append(header::CONTENT_TYPE, "html".parse().unwrap());
1976 /// map.append(header::CONTENT_TYPE, "xml".parse().unwrap());
1977 ///
1978 /// let mut iter = map.into_iter();
1979 ///
1980 /// assert_eq!(iter.next(), Some((Some(header::CONTENT_LENGTH), "123".parse().unwrap())));
1981 /// assert_eq!(iter.next(), Some((None, "456".parse().unwrap())));
1982 ///
1983 /// assert_eq!(iter.next(), Some((Some(header::CONTENT_TYPE), "json".parse().unwrap())));
1984 /// assert_eq!(iter.next(), Some((None, "html".parse().unwrap())));
1985 /// assert_eq!(iter.next(), Some((None, "xml".parse().unwrap())));
1986 /// assert!(iter.next().is_none());
1987 /// ```
1988 fn into_iter(self) -> IntoIter<T> {
1989 IntoIter {
1990 next: None,
1991 entries: self.entries.into_iter(),
1992 extra_values: self.extra_values,
1993 }
1994 }
1995}
1996
1997impl<T> FromIterator<(HeaderName, T)> for HeaderMap<T> {
1998 fn from_iter<I>(iter: I) -> Self
1999 where
2000 I: IntoIterator<Item = (HeaderName, T)>,
2001 {
2002 let mut map = HeaderMap::default();
2003 map.extend(iter);
2004 map
2005 }
2006}
2007
2008/// Try to convert a `HashMap` into a `HeaderMap`.
2009///
2010/// # Examples
2011///
2012/// ```
2013/// use std::collections::HashMap;
2014/// use std::convert::TryInto;
2015/// use http::HeaderMap;
2016///
2017/// let mut map = HashMap::new();
2018/// map.insert("X-Custom-Header".to_string(), "my value".to_string());
2019///
2020/// let headers: HeaderMap = (&map).try_into().expect("valid headers");
2021/// assert_eq!(headers["X-Custom-Header"], "my value");
2022/// ```
2023impl<'a, K, V, S, T> TryFrom<&'a HashMap<K, V, S>> for HeaderMap<T>
2024where
2025 K: Eq + Hash,
2026 HeaderName: TryFrom<&'a K>,
2027 <HeaderName as TryFrom<&'a K>>::Error: Into<crate::Error>,
2028 T: TryFrom<&'a V>,
2029 T::Error: Into<crate::Error>,
2030{
2031 type Error = Error;
2032
2033 fn try_from(c: &'a HashMap<K, V, S>) -> Result<Self, Self::Error> {
2034 c.iter()
2035 .map(|(k, v)| -> crate::Result<(HeaderName, T)> {
2036 let name = TryFrom::try_from(k).map_err(Into::into)?;
2037 let value = TryFrom::try_from(v).map_err(Into::into)?;
2038 Ok((name, value))
2039 })
2040 .collect()
2041 }
2042}
2043
2044impl<T> Extend<(Option<HeaderName>, T)> for HeaderMap<T> {
2045 /// Extend a `HeaderMap` with the contents of another `HeaderMap`.
2046 ///
2047 /// This function expects the yielded items to follow the same structure as
2048 /// `IntoIter`.
2049 ///
2050 /// # Panics
2051 ///
2052 /// This panics if the first yielded item does not have a `HeaderName`.
2053 ///
2054 /// # Examples
2055 ///
2056 /// ```
2057 /// # use http::header::*;
2058 /// let mut map = HeaderMap::new();
2059 ///
2060 /// map.insert(ACCEPT, "text/plain".parse().unwrap());
2061 /// map.insert(HOST, "hello.world".parse().unwrap());
2062 ///
2063 /// let mut extra = HeaderMap::new();
2064 ///
2065 /// extra.insert(HOST, "foo.bar".parse().unwrap());
2066 /// extra.insert(COOKIE, "hello".parse().unwrap());
2067 /// extra.append(COOKIE, "world".parse().unwrap());
2068 ///
2069 /// map.extend(extra);
2070 ///
2071 /// assert_eq!(map["host"], "foo.bar");
2072 /// assert_eq!(map["accept"], "text/plain");
2073 /// assert_eq!(map["cookie"], "hello");
2074 ///
2075 /// let v = map.get_all("host");
2076 /// assert_eq!(1, v.iter().count());
2077 ///
2078 /// let v = map.get_all("cookie");
2079 /// assert_eq!(2, v.iter().count());
2080 /// ```
2081 fn extend<I: IntoIterator<Item = (Option<HeaderName>, T)>>(&mut self, iter: I) {
2082 let mut iter = iter.into_iter();
2083
2084 // The structure of this is a bit weird, but it is mostly to make the
2085 // borrow checker happy.
2086 let (mut key, mut val) = match iter.next() {
2087 Some((Some(key), val)) => (key, val),
2088 Some((None, _)) => panic!("expected a header name, but got None"),
2089 None => return,
2090 };
2091
2092 'outer: loop {
2093 let mut entry = match self.try_entry2(key).expect("size overflows MAX_SIZE") {
2094 Entry::Occupied(mut e) => {
2095 // Replace all previous values while maintaining a handle to
2096 // the entry.
2097 e.insert(val);
2098 e
2099 }
2100 Entry::Vacant(e) => e.insert_entry(val),
2101 };
2102
2103 // As long as `HeaderName` is none, keep inserting the value into
2104 // the current entry
2105 loop {
2106 match iter.next() {
2107 Some((Some(k), v)) => {
2108 key = k;
2109 val = v;
2110 continue 'outer;
2111 }
2112 Some((None, v)) => {
2113 entry.append(v);
2114 }
2115 None => {
2116 return;
2117 }
2118 }
2119 }
2120 }
2121 }
2122}
2123
2124impl<T> Extend<(HeaderName, T)> for HeaderMap<T> {
2125 fn extend<I: IntoIterator<Item = (HeaderName, T)>>(&mut self, iter: I) {
2126 // Keys may be already present or show multiple times in the iterator.
2127 // Reserve the entire hint lower bound if the map is empty.
2128 // Otherwise reserve half the hint (rounded up), so the map
2129 // will only resize twice in the worst case.
2130 let iter = iter.into_iter();
2131
2132 let reserve = if self.is_empty() {
2133 iter.size_hint().0
2134 } else {
2135 (iter.size_hint().0 + 1) / 2
2136 };
2137
2138 self.reserve(reserve);
2139
2140 for (k, v) in iter {
2141 self.append(k, v);
2142 }
2143 }
2144}
2145
2146impl<T: PartialEq> PartialEq for HeaderMap<T> {
2147 fn eq(&self, other: &HeaderMap<T>) -> bool {
2148 if self.len() != other.len() {
2149 return false;
2150 }
2151
2152 self.keys()
2153 .all(|key| self.get_all(key) == other.get_all(key))
2154 }
2155}
2156
2157impl<T: Eq> Eq for HeaderMap<T> {}
2158
2159impl<T: fmt::Debug> fmt::Debug for HeaderMap<T> {
2160 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2161 f.debug_map().entries(self.iter()).finish()
2162 }
2163}
2164
2165impl<T> Default for HeaderMap<T> {
2166 fn default() -> Self {
2167 HeaderMap::try_with_capacity(0).expect("zero capacity should never fail")
2168 }
2169}
2170
2171impl<K, T> ops::Index<K> for HeaderMap<T>
2172where
2173 K: AsHeaderName,
2174{
2175 type Output = T;
2176
2177 /// # Panics
2178 /// Using the index operator will cause a panic if the header you're querying isn't set.
2179 #[inline]
2180 fn index(&self, index: K) -> &T {
2181 match self.get2(&index) {
2182 Some(val) => val,
2183 None => panic!("no entry found for key {:?}", index.as_str()),
2184 }
2185 }
2186}
2187
2188/// phase 2 is post-insert where we forward-shift `Pos` in the indices.
2189///
2190/// returns the number of displaced elements
2191#[inline]
2192fn do_insert_phase_two(indices: &mut [Pos], mut probe: usize, mut old_pos: Pos) -> usize {
2193 let mut num_displaced = 0;
2194
2195 probe_loop!(probe < indices.len(), {
2196 let pos = &mut indices[probe];
2197
2198 if pos.is_none() {
2199 *pos = old_pos;
2200 break;
2201 } else {
2202 num_displaced += 1;
2203 old_pos = mem::replace(pos, old_pos);
2204 }
2205 });
2206
2207 num_displaced
2208}
2209
2210#[inline]
2211fn append_value<T>(
2212 entry_idx: usize,
2213 entry: &mut Bucket<T>,
2214 extra: &mut Vec<ExtraValue<T>>,
2215 value: T,
2216) {
2217 match entry.links {
2218 Some(links) => {
2219 let idx = extra.len();
2220 extra.push(ExtraValue {
2221 value,
2222 prev: Link::Extra(links.tail),
2223 next: Link::Entry(entry_idx),
2224 });
2225
2226 extra[links.tail].next = Link::Extra(idx);
2227
2228 entry.links = Some(Links { tail: idx, ..links });
2229 }
2230 None => {
2231 let idx = extra.len();
2232 extra.push(ExtraValue {
2233 value,
2234 prev: Link::Entry(entry_idx),
2235 next: Link::Entry(entry_idx),
2236 });
2237
2238 entry.links = Some(Links {
2239 next: idx,
2240 tail: idx,
2241 });
2242 }
2243 }
2244}
2245
2246// ===== impl Iter =====
2247
2248impl<'a, T> Iterator for Iter<'a, T> {
2249 type Item = (&'a HeaderName, &'a T);
2250
2251 fn next(&mut self) -> Option<Self::Item> {
2252 use self::Cursor::*;
2253
2254 if self.cursor.is_none() {
2255 if (self.entry + 1) >= self.map.entries.len() {
2256 return None;
2257 }
2258
2259 self.entry += 1;
2260 self.cursor = Some(Cursor::Head);
2261 }
2262
2263 let entry = &self.map.entries[self.entry];
2264
2265 match self.cursor.unwrap() {
2266 Head => {
2267 self.cursor = entry.links.map(|l| Values(l.next));
2268 Some((&entry.key, &entry.value))
2269 }
2270 Values(idx) => {
2271 let extra = &self.map.extra_values[idx];
2272
2273 match extra.next {
2274 Link::Entry(_) => self.cursor = None,
2275 Link::Extra(i) => self.cursor = Some(Values(i)),
2276 }
2277
2278 Some((&entry.key, &extra.value))
2279 }
2280 }
2281 }
2282
2283 fn size_hint(&self) -> (usize, Option<usize>) {
2284 let map = self.map;
2285 debug_assert!(map.entries.len() >= self.entry);
2286
2287 let lower = map.entries.len() - self.entry;
2288 // We could pessimistically guess at the upper bound, saying
2289 // that its lower + map.extra_values.len(). That could be
2290 // way over though, such as if we're near the end, and have
2291 // already gone through several extra values...
2292 (lower, None)
2293 }
2294}
2295
2296impl<'a, T> FusedIterator for Iter<'a, T> {}
2297
2298unsafe impl<'a, T: Sync> Sync for Iter<'a, T> {}
2299unsafe impl<'a, T: Sync> Send for Iter<'a, T> {}
2300
2301// ===== impl IterMut =====
2302
2303impl<'a, T> IterMut<'a, T> {
2304 fn next_unsafe(&mut self) -> Option<(&'a HeaderName, *mut T)> {
2305 use self::Cursor::*;
2306
2307 if self.cursor.is_none() {
2308 if (self.entry + 1) >= unsafe { &*self.map }.entries.len() {
2309 return None;
2310 }
2311
2312 self.entry += 1;
2313 self.cursor = Some(Cursor::Head);
2314 }
2315
2316 let entry = unsafe { &mut (*self.map).entries[self.entry] };
2317
2318 match self.cursor.unwrap() {
2319 Head => {
2320 self.cursor = entry.links.map(|l| Values(l.next));
2321 Some((&entry.key, &mut entry.value as *mut _))
2322 }
2323 Values(idx) => {
2324 let extra = unsafe { &mut (*self.map).extra_values[idx] };
2325
2326 match extra.next {
2327 Link::Entry(_) => self.cursor = None,
2328 Link::Extra(i) => self.cursor = Some(Values(i)),
2329 }
2330
2331 Some((&entry.key, &mut extra.value as *mut _))
2332 }
2333 }
2334 }
2335}
2336
2337impl<'a, T> Iterator for IterMut<'a, T> {
2338 type Item = (&'a HeaderName, &'a mut T);
2339
2340 fn next(&mut self) -> Option<Self::Item> {
2341 self.next_unsafe()
2342 .map(|(key, ptr)| (key, unsafe { &mut *ptr }))
2343 }
2344
2345 fn size_hint(&self) -> (usize, Option<usize>) {
2346 let map = unsafe { &*self.map };
2347 debug_assert!(map.entries.len() >= self.entry);
2348
2349 let lower = map.entries.len() - self.entry;
2350 // We could pessimistically guess at the upper bound, saying
2351 // that its lower + map.extra_values.len(). That could be
2352 // way over though, such as if we're near the end, and have
2353 // already gone through several extra values...
2354 (lower, None)
2355 }
2356}
2357
2358impl<'a, T> FusedIterator for IterMut<'a, T> {}
2359
2360unsafe impl<'a, T: Sync> Sync for IterMut<'a, T> {}
2361unsafe impl<'a, T: Send> Send for IterMut<'a, T> {}
2362
2363// ===== impl Keys =====
2364
2365impl<'a, T> Iterator for Keys<'a, T> {
2366 type Item = &'a HeaderName;
2367
2368 fn next(&mut self) -> Option<Self::Item> {
2369 self.inner.next().map(|b| &b.key)
2370 }
2371
2372 fn size_hint(&self) -> (usize, Option<usize>) {
2373 self.inner.size_hint()
2374 }
2375
2376 fn nth(&mut self, n: usize) -> Option<Self::Item> {
2377 self.inner.nth(n).map(|b| &b.key)
2378 }
2379
2380 fn count(self) -> usize {
2381 self.inner.count()
2382 }
2383
2384 fn last(self) -> Option<Self::Item> {
2385 self.inner.last().map(|b| &b.key)
2386 }
2387}
2388
2389impl<'a, T> ExactSizeIterator for Keys<'a, T> {}
2390impl<'a, T> FusedIterator for Keys<'a, T> {}
2391
2392// ===== impl Values ====
2393
2394impl<'a, T> Iterator for Values<'a, T> {
2395 type Item = &'a T;
2396
2397 fn next(&mut self) -> Option<Self::Item> {
2398 self.inner.next().map(|(_, v)| v)
2399 }
2400
2401 fn size_hint(&self) -> (usize, Option<usize>) {
2402 self.inner.size_hint()
2403 }
2404}
2405
2406impl<'a, T> FusedIterator for Values<'a, T> {}
2407
2408// ===== impl ValuesMut ====
2409
2410impl<'a, T> Iterator for ValuesMut<'a, T> {
2411 type Item = &'a mut T;
2412
2413 fn next(&mut self) -> Option<Self::Item> {
2414 self.inner.next().map(|(_, v)| v)
2415 }
2416
2417 fn size_hint(&self) -> (usize, Option<usize>) {
2418 self.inner.size_hint()
2419 }
2420}
2421
2422impl<'a, T> FusedIterator for ValuesMut<'a, T> {}
2423
2424// ===== impl Drain =====
2425
2426impl<'a, T> Iterator for Drain<'a, T> {
2427 type Item = (Option<HeaderName>, T);
2428
2429 fn next(&mut self) -> Option<Self::Item> {
2430 if let Some(next) = self.next {
2431 // Remove the extra value
2432
2433 let raw_links = RawLinks(self.entries);
2434 let extra = unsafe { remove_extra_value(raw_links, &mut *self.extra_values, next) };
2435
2436 match extra.next {
2437 Link::Extra(idx) => self.next = Some(idx),
2438 Link::Entry(_) => self.next = None,
2439 }
2440
2441 return Some((None, extra.value));
2442 }
2443
2444 let idx = self.idx;
2445
2446 if idx == self.len {
2447 return None;
2448 }
2449
2450 self.idx += 1;
2451
2452 unsafe {
2453 let entry = &(*self.entries)[idx];
2454
2455 // Read the header name
2456 let key = ptr::read(&entry.key as *const _);
2457 let value = ptr::read(&entry.value as *const _);
2458 self.next = entry.links.map(|l| l.next);
2459
2460 Some((Some(key), value))
2461 }
2462 }
2463
2464 fn size_hint(&self) -> (usize, Option<usize>) {
2465 // At least this many names... It's unknown if the user wants
2466 // to count the extra_values on top.
2467 //
2468 // For instance, extending a new `HeaderMap` wouldn't need to
2469 // reserve the upper-bound in `entries`, only the lower-bound.
2470 let lower = self.len - self.idx;
2471 let upper = unsafe { (*self.extra_values).len() } + lower;
2472 (lower, Some(upper))
2473 }
2474}
2475
2476impl<'a, T> FusedIterator for Drain<'a, T> {}
2477
2478impl<'a, T> Drop for Drain<'a, T> {
2479 fn drop(&mut self) {
2480 for _ in self {}
2481 }
2482}
2483
2484unsafe impl<'a, T: Sync> Sync for Drain<'a, T> {}
2485unsafe impl<'a, T: Send> Send for Drain<'a, T> {}
2486
2487// ===== impl Entry =====
2488
2489impl<'a, T> Entry<'a, T> {
2490 /// Ensures a value is in the entry by inserting the default if empty.
2491 ///
2492 /// Returns a mutable reference to the **first** value in the entry.
2493 ///
2494 /// # Panics
2495 ///
2496 /// This method panics if capacity exceeds max `HeaderMap` capacity
2497 ///
2498 /// # Examples
2499 ///
2500 /// ```
2501 /// # use http::HeaderMap;
2502 /// let mut map: HeaderMap<u32> = HeaderMap::default();
2503 ///
2504 /// let headers = &[
2505 /// "content-length",
2506 /// "x-hello",
2507 /// "Content-Length",
2508 /// "x-world",
2509 /// ];
2510 ///
2511 /// for &header in headers {
2512 /// let counter = map.entry(header)
2513 /// .or_insert(0);
2514 /// *counter += 1;
2515 /// }
2516 ///
2517 /// assert_eq!(map["content-length"], 2);
2518 /// assert_eq!(map["x-hello"], 1);
2519 /// ```
2520 pub fn or_insert(self, default: T) -> &'a mut T {
2521 self.or_try_insert(default)
2522 .expect("size overflows MAX_SIZE")
2523 }
2524
2525 /// Ensures a value is in the entry by inserting the default if empty.
2526 ///
2527 /// Returns a mutable reference to the **first** value in the entry.
2528 ///
2529 /// # Errors
2530 ///
2531 /// This function may return an error if `HeaderMap` exceeds max capacity
2532 ///
2533 /// # Examples
2534 ///
2535 /// ```
2536 /// # use http::HeaderMap;
2537 /// let mut map: HeaderMap<u32> = HeaderMap::default();
2538 ///
2539 /// let headers = &[
2540 /// "content-length",
2541 /// "x-hello",
2542 /// "Content-Length",
2543 /// "x-world",
2544 /// ];
2545 ///
2546 /// for &header in headers {
2547 /// let counter = map.entry(header)
2548 /// .or_try_insert(0)
2549 /// .unwrap();
2550 /// *counter += 1;
2551 /// }
2552 ///
2553 /// assert_eq!(map["content-length"], 2);
2554 /// assert_eq!(map["x-hello"], 1);
2555 /// ```
2556 pub fn or_try_insert(self, default: T) -> Result<&'a mut T, MaxSizeReached> {
2557 use self::Entry::*;
2558
2559 match self {
2560 Occupied(e) => Ok(e.into_mut()),
2561 Vacant(e) => e.try_insert(default),
2562 }
2563 }
2564
2565 /// Ensures a value is in the entry by inserting the result of the default
2566 /// function if empty.
2567 ///
2568 /// The default function is not called if the entry exists in the map.
2569 /// Returns a mutable reference to the **first** value in the entry.
2570 ///
2571 /// # Examples
2572 ///
2573 /// Basic usage.
2574 ///
2575 /// ```
2576 /// # use http::HeaderMap;
2577 /// let mut map = HeaderMap::new();
2578 ///
2579 /// let res = map.entry("x-hello")
2580 /// .or_insert_with(|| "world".parse().unwrap());
2581 ///
2582 /// assert_eq!(res, "world");
2583 /// ```
2584 ///
2585 /// The default function is not called if the entry exists in the map.
2586 ///
2587 /// ```
2588 /// # use http::HeaderMap;
2589 /// # use http::header::HOST;
2590 /// let mut map = HeaderMap::new();
2591 /// map.try_insert(HOST, "world".parse().unwrap()).unwrap();
2592 ///
2593 /// let res = map.try_entry("host")
2594 /// .unwrap()
2595 /// .or_try_insert_with(|| unreachable!())
2596 /// .unwrap();
2597 ///
2598 ///
2599 /// assert_eq!(res, "world");
2600 /// ```
2601 pub fn or_insert_with<F: FnOnce() -> T>(self, default: F) -> &'a mut T {
2602 self.or_try_insert_with(default)
2603 .expect("size overflows MAX_SIZE")
2604 }
2605
2606 /// Ensures a value is in the entry by inserting the result of the default
2607 /// function if empty.
2608 ///
2609 /// The default function is not called if the entry exists in the map.
2610 /// Returns a mutable reference to the **first** value in the entry.
2611 ///
2612 /// # Examples
2613 ///
2614 /// Basic usage.
2615 ///
2616 /// ```
2617 /// # use http::HeaderMap;
2618 /// let mut map = HeaderMap::new();
2619 ///
2620 /// let res = map.entry("x-hello")
2621 /// .or_insert_with(|| "world".parse().unwrap());
2622 ///
2623 /// assert_eq!(res, "world");
2624 /// ```
2625 ///
2626 /// The default function is not called if the entry exists in the map.
2627 ///
2628 /// ```
2629 /// # use http::HeaderMap;
2630 /// # use http::header::HOST;
2631 /// let mut map = HeaderMap::new();
2632 /// map.try_insert(HOST, "world".parse().unwrap()).unwrap();
2633 ///
2634 /// let res = map.try_entry("host")
2635 /// .unwrap()
2636 /// .or_try_insert_with(|| unreachable!())
2637 /// .unwrap();
2638 ///
2639 ///
2640 /// assert_eq!(res, "world");
2641 /// ```
2642 pub fn or_try_insert_with<F: FnOnce() -> T>(
2643 self,
2644 default: F,
2645 ) -> Result<&'a mut T, MaxSizeReached> {
2646 use self::Entry::*;
2647
2648 match self {
2649 Occupied(e) => Ok(e.into_mut()),
2650 Vacant(e) => e.try_insert(default()),
2651 }
2652 }
2653
2654 /// Returns a reference to the entry's key
2655 ///
2656 /// # Examples
2657 ///
2658 /// ```
2659 /// # use http::HeaderMap;
2660 /// let mut map = HeaderMap::new();
2661 ///
2662 /// assert_eq!(map.entry("x-hello").key(), "x-hello");
2663 /// ```
2664 pub fn key(&self) -> &HeaderName {
2665 use self::Entry::*;
2666
2667 match *self {
2668 Vacant(ref e) => e.key(),
2669 Occupied(ref e) => e.key(),
2670 }
2671 }
2672}
2673
2674// ===== impl VacantEntry =====
2675
2676impl<'a, T> VacantEntry<'a, T> {
2677 /// Returns a reference to the entry's key
2678 ///
2679 /// # Examples
2680 ///
2681 /// ```
2682 /// # use http::HeaderMap;
2683 /// let mut map = HeaderMap::new();
2684 ///
2685 /// assert_eq!(map.entry("x-hello").key().as_str(), "x-hello");
2686 /// ```
2687 pub fn key(&self) -> &HeaderName {
2688 &self.key
2689 }
2690
2691 /// Take ownership of the key
2692 ///
2693 /// # Examples
2694 ///
2695 /// ```
2696 /// # use http::header::{HeaderMap, Entry};
2697 /// let mut map = HeaderMap::new();
2698 ///
2699 /// if let Entry::Vacant(v) = map.entry("x-hello") {
2700 /// assert_eq!(v.into_key().as_str(), "x-hello");
2701 /// }
2702 /// ```
2703 pub fn into_key(self) -> HeaderName {
2704 self.key
2705 }
2706
2707 /// Insert the value into the entry.
2708 ///
2709 /// The value will be associated with this entry's key. A mutable reference
2710 /// to the inserted value will be returned.
2711 ///
2712 /// # Examples
2713 ///
2714 /// ```
2715 /// # use http::header::{HeaderMap, Entry};
2716 /// let mut map = HeaderMap::new();
2717 ///
2718 /// if let Entry::Vacant(v) = map.entry("x-hello") {
2719 /// v.insert("world".parse().unwrap());
2720 /// }
2721 ///
2722 /// assert_eq!(map["x-hello"], "world");
2723 /// ```
2724 pub fn insert(self, value: T) -> &'a mut T {
2725 self.try_insert(value).expect("size overflows MAX_SIZE")
2726 }
2727
2728 /// Insert the value into the entry.
2729 ///
2730 /// The value will be associated with this entry's key. A mutable reference
2731 /// to the inserted value will be returned.
2732 ///
2733 /// # Examples
2734 ///
2735 /// ```
2736 /// # use http::header::{HeaderMap, Entry};
2737 /// let mut map = HeaderMap::new();
2738 ///
2739 /// if let Entry::Vacant(v) = map.entry("x-hello") {
2740 /// v.insert("world".parse().unwrap());
2741 /// }
2742 ///
2743 /// assert_eq!(map["x-hello"], "world");
2744 /// ```
2745 pub fn try_insert(self, value: T) -> Result<&'a mut T, MaxSizeReached> {
2746 // Ensure that there is space in the map
2747 let index =
2748 self.map
2749 .try_insert_phase_two(self.key, value, self.hash, self.probe, self.danger)?;
2750
2751 Ok(&mut self.map.entries[index].value)
2752 }
2753
2754 /// Insert the value into the entry.
2755 ///
2756 /// The value will be associated with this entry's key. The new
2757 /// `OccupiedEntry` is returned, allowing for further manipulation.
2758 ///
2759 /// # Examples
2760 ///
2761 /// ```
2762 /// # use http::header::*;
2763 /// let mut map = HeaderMap::new();
2764 ///
2765 /// if let Entry::Vacant(v) = map.try_entry("x-hello").unwrap() {
2766 /// let mut e = v.try_insert_entry("world".parse().unwrap()).unwrap();
2767 /// e.insert("world2".parse().unwrap());
2768 /// }
2769 ///
2770 /// assert_eq!(map["x-hello"], "world2");
2771 /// ```
2772 pub fn insert_entry(self, value: T) -> OccupiedEntry<'a, T> {
2773 self.try_insert_entry(value)
2774 .expect("size overflows MAX_SIZE")
2775 }
2776
2777 /// Insert the value into the entry.
2778 ///
2779 /// The value will be associated with this entry's key. The new
2780 /// `OccupiedEntry` is returned, allowing for further manipulation.
2781 ///
2782 /// # Examples
2783 ///
2784 /// ```
2785 /// # use http::header::*;
2786 /// let mut map = HeaderMap::new();
2787 ///
2788 /// if let Entry::Vacant(v) = map.try_entry("x-hello").unwrap() {
2789 /// let mut e = v.try_insert_entry("world".parse().unwrap()).unwrap();
2790 /// e.insert("world2".parse().unwrap());
2791 /// }
2792 ///
2793 /// assert_eq!(map["x-hello"], "world2");
2794 /// ```
2795 pub fn try_insert_entry(self, value: T) -> Result<OccupiedEntry<'a, T>, MaxSizeReached> {
2796 // Ensure that there is space in the map
2797 let index =
2798 self.map
2799 .try_insert_phase_two(self.key, value, self.hash, self.probe, self.danger)?;
2800
2801 Ok(OccupiedEntry {
2802 map: self.map,
2803 index,
2804 probe: self.probe,
2805 })
2806 }
2807}
2808
2809// ===== impl GetAll =====
2810
2811impl<'a, T: 'a> GetAll<'a, T> {
2812 /// Returns an iterator visiting all values associated with the entry.
2813 ///
2814 /// Values are iterated in insertion order.
2815 ///
2816 /// # Examples
2817 ///
2818 /// ```
2819 /// # use http::HeaderMap;
2820 /// # use http::header::HOST;
2821 /// let mut map = HeaderMap::new();
2822 /// map.insert(HOST, "hello.world".parse().unwrap());
2823 /// map.append(HOST, "hello.earth".parse().unwrap());
2824 ///
2825 /// let values = map.get_all("host");
2826 /// let mut iter = values.iter();
2827 /// assert_eq!(&"hello.world", iter.next().unwrap());
2828 /// assert_eq!(&"hello.earth", iter.next().unwrap());
2829 /// assert!(iter.next().is_none());
2830 /// ```
2831 pub fn iter(&self) -> ValueIter<'a, T> {
2832 // This creates a new GetAll struct so that the lifetime
2833 // isn't bound to &self.
2834 GetAll {
2835 map: self.map,
2836 index: self.index,
2837 }
2838 .into_iter()
2839 }
2840}
2841
2842impl<'a, T: PartialEq> PartialEq for GetAll<'a, T> {
2843 fn eq(&self, other: &Self) -> bool {
2844 self.iter().eq(other.iter())
2845 }
2846}
2847
2848impl<'a, T> IntoIterator for GetAll<'a, T> {
2849 type Item = &'a T;
2850 type IntoIter = ValueIter<'a, T>;
2851
2852 fn into_iter(self) -> ValueIter<'a, T> {
2853 self.map.value_iter(self.index)
2854 }
2855}
2856
2857impl<'a, 'b: 'a, T> IntoIterator for &'b GetAll<'a, T> {
2858 type Item = &'a T;
2859 type IntoIter = ValueIter<'a, T>;
2860
2861 fn into_iter(self) -> ValueIter<'a, T> {
2862 self.map.value_iter(self.index)
2863 }
2864}
2865
2866// ===== impl ValueIter =====
2867
2868impl<'a, T: 'a> Iterator for ValueIter<'a, T> {
2869 type Item = &'a T;
2870
2871 fn next(&mut self) -> Option<Self::Item> {
2872 use self::Cursor::*;
2873
2874 match self.front {
2875 Some(Head) => {
2876 let entry = &self.map.entries[self.index];
2877
2878 if self.back == Some(Head) {
2879 self.front = None;
2880 self.back = None;
2881 } else {
2882 // Update the iterator state
2883 match entry.links {
2884 Some(links) => {
2885 self.front = Some(Values(links.next));
2886 }
2887 None => unreachable!(),
2888 }
2889 }
2890
2891 Some(&entry.value)
2892 }
2893 Some(Values(idx)) => {
2894 let extra = &self.map.extra_values[idx];
2895
2896 if self.front == self.back {
2897 self.front = None;
2898 self.back = None;
2899 } else {
2900 match extra.next {
2901 Link::Entry(_) => self.front = None,
2902 Link::Extra(i) => self.front = Some(Values(i)),
2903 }
2904 }
2905
2906 Some(&extra.value)
2907 }
2908 None => None,
2909 }
2910 }
2911
2912 fn size_hint(&self) -> (usize, Option<usize>) {
2913 match (self.front, self.back) {
2914 // Exactly 1 value...
2915 (Some(Cursor::Head), Some(Cursor::Head)) => (1, Some(1)),
2916 // At least 1...
2917 (Some(_), _) => (1, None),
2918 // No more values...
2919 (None, _) => (0, Some(0)),
2920 }
2921 }
2922}
2923
2924impl<'a, T: 'a> DoubleEndedIterator for ValueIter<'a, T> {
2925 fn next_back(&mut self) -> Option<Self::Item> {
2926 use self::Cursor::*;
2927
2928 match self.back {
2929 Some(Head) => {
2930 self.front = None;
2931 self.back = None;
2932 Some(&self.map.entries[self.index].value)
2933 }
2934 Some(Values(idx)) => {
2935 let extra = &self.map.extra_values[idx];
2936
2937 if self.front == self.back {
2938 self.front = None;
2939 self.back = None;
2940 } else {
2941 match extra.prev {
2942 Link::Entry(_) => self.back = Some(Head),
2943 Link::Extra(idx) => self.back = Some(Values(idx)),
2944 }
2945 }
2946
2947 Some(&extra.value)
2948 }
2949 None => None,
2950 }
2951 }
2952}
2953
2954impl<'a, T> FusedIterator for ValueIter<'a, T> {}
2955
2956// ===== impl ValueIterMut =====
2957
2958impl<'a, T: 'a> Iterator for ValueIterMut<'a, T> {
2959 type Item = &'a mut T;
2960
2961 fn next(&mut self) -> Option<Self::Item> {
2962 use self::Cursor::*;
2963
2964 let entry = unsafe { &mut (*self.map).entries[self.index] };
2965
2966 match self.front {
2967 Some(Head) => {
2968 if self.back == Some(Head) {
2969 self.front = None;
2970 self.back = None;
2971 } else {
2972 // Update the iterator state
2973 match entry.links {
2974 Some(links) => {
2975 self.front = Some(Values(links.next));
2976 }
2977 None => unreachable!(),
2978 }
2979 }
2980
2981 Some(&mut entry.value)
2982 }
2983 Some(Values(idx)) => {
2984 let extra = unsafe { &mut (*self.map).extra_values[idx] };
2985
2986 if self.front == self.back {
2987 self.front = None;
2988 self.back = None;
2989 } else {
2990 match extra.next {
2991 Link::Entry(_) => self.front = None,
2992 Link::Extra(i) => self.front = Some(Values(i)),
2993 }
2994 }
2995
2996 Some(&mut extra.value)
2997 }
2998 None => None,
2999 }
3000 }
3001}
3002
3003impl<'a, T: 'a> DoubleEndedIterator for ValueIterMut<'a, T> {
3004 fn next_back(&mut self) -> Option<Self::Item> {
3005 use self::Cursor::*;
3006
3007 let entry = unsafe { &mut (*self.map).entries[self.index] };
3008
3009 match self.back {
3010 Some(Head) => {
3011 self.front = None;
3012 self.back = None;
3013 Some(&mut entry.value)
3014 }
3015 Some(Values(idx)) => {
3016 let extra = unsafe { &mut (*self.map).extra_values[idx] };
3017
3018 if self.front == self.back {
3019 self.front = None;
3020 self.back = None;
3021 } else {
3022 match extra.prev {
3023 Link::Entry(_) => self.back = Some(Head),
3024 Link::Extra(idx) => self.back = Some(Values(idx)),
3025 }
3026 }
3027
3028 Some(&mut extra.value)
3029 }
3030 None => None,
3031 }
3032 }
3033}
3034
3035impl<'a, T> FusedIterator for ValueIterMut<'a, T> {}
3036
3037unsafe impl<'a, T: Sync> Sync for ValueIterMut<'a, T> {}
3038unsafe impl<'a, T: Send> Send for ValueIterMut<'a, T> {}
3039
3040// ===== impl IntoIter =====
3041
3042impl<T> Iterator for IntoIter<T> {
3043 type Item = (Option<HeaderName>, T);
3044
3045 fn next(&mut self) -> Option<Self::Item> {
3046 if let Some(next) = self.next {
3047 self.next = match self.extra_values[next].next {
3048 Link::Entry(_) => None,
3049 Link::Extra(v) => Some(v),
3050 };
3051
3052 let value = unsafe { ptr::read(&self.extra_values[next].value) };
3053
3054 return Some((None, value));
3055 }
3056
3057 if let Some(bucket) = self.entries.next() {
3058 self.next = bucket.links.map(|l| l.next);
3059 let name = Some(bucket.key);
3060 let value = bucket.value;
3061
3062 return Some((name, value));
3063 }
3064
3065 None
3066 }
3067
3068 fn size_hint(&self) -> (usize, Option<usize>) {
3069 let (lower, _) = self.entries.size_hint();
3070 // There could be more than just the entries upper, as there
3071 // could be items in the `extra_values`. We could guess, saying
3072 // `upper + extra_values.len()`, but that could overestimate by a lot.
3073 (lower, None)
3074 }
3075}
3076
3077impl<T> FusedIterator for IntoIter<T> {}
3078
3079impl<T> Drop for IntoIter<T> {
3080 fn drop(&mut self) {
3081 // Ensure the iterator is consumed
3082 for _ in self.by_ref() {}
3083
3084 // All the values have already been yielded out.
3085 unsafe {
3086 self.extra_values.set_len(0);
3087 }
3088 }
3089}
3090
3091// ===== impl OccupiedEntry =====
3092
3093impl<'a, T> OccupiedEntry<'a, T> {
3094 /// Returns a reference to the entry's key.
3095 ///
3096 /// # Examples
3097 ///
3098 /// ```
3099 /// # use http::header::{HeaderMap, Entry, HOST};
3100 /// let mut map = HeaderMap::new();
3101 /// map.insert(HOST, "world".parse().unwrap());
3102 ///
3103 /// if let Entry::Occupied(e) = map.entry("host") {
3104 /// assert_eq!("host", e.key());
3105 /// }
3106 /// ```
3107 pub fn key(&self) -> &HeaderName {
3108 &self.map.entries[self.index].key
3109 }
3110
3111 /// Get a reference to the first value in the entry.
3112 ///
3113 /// Values are stored in insertion order.
3114 ///
3115 /// # Panics
3116 ///
3117 /// `get` panics if there are no values associated with the entry.
3118 ///
3119 /// # Examples
3120 ///
3121 /// ```
3122 /// # use http::header::{HeaderMap, Entry, HOST};
3123 /// let mut map = HeaderMap::new();
3124 /// map.insert(HOST, "hello.world".parse().unwrap());
3125 ///
3126 /// if let Entry::Occupied(mut e) = map.entry("host") {
3127 /// assert_eq!(e.get(), &"hello.world");
3128 ///
3129 /// e.append("hello.earth".parse().unwrap());
3130 ///
3131 /// assert_eq!(e.get(), &"hello.world");
3132 /// }
3133 /// ```
3134 pub fn get(&self) -> &T {
3135 &self.map.entries[self.index].value
3136 }
3137
3138 /// Get a mutable reference to the first value in the entry.
3139 ///
3140 /// Values are stored in insertion order.
3141 ///
3142 /// # Panics
3143 ///
3144 /// `get_mut` panics if there are no values associated with the entry.
3145 ///
3146 /// # Examples
3147 ///
3148 /// ```
3149 /// # use http::header::{HeaderMap, Entry, HOST};
3150 /// let mut map = HeaderMap::default();
3151 /// map.insert(HOST, "hello.world".to_string());
3152 ///
3153 /// if let Entry::Occupied(mut e) = map.entry("host") {
3154 /// e.get_mut().push_str("-2");
3155 /// assert_eq!(e.get(), &"hello.world-2");
3156 /// }
3157 /// ```
3158 pub fn get_mut(&mut self) -> &mut T {
3159 &mut self.map.entries[self.index].value
3160 }
3161
3162 /// Converts the `OccupiedEntry` into a mutable reference to the **first**
3163 /// value.
3164 ///
3165 /// The lifetime of the returned reference is bound to the original map.
3166 ///
3167 /// # Panics
3168 ///
3169 /// `into_mut` panics if there are no values associated with the entry.
3170 ///
3171 /// # Examples
3172 ///
3173 /// ```
3174 /// # use http::header::{HeaderMap, Entry, HOST};
3175 /// let mut map = HeaderMap::default();
3176 /// map.insert(HOST, "hello.world".to_string());
3177 /// map.append(HOST, "hello.earth".to_string());
3178 ///
3179 /// if let Entry::Occupied(e) = map.entry("host") {
3180 /// e.into_mut().push_str("-2");
3181 /// }
3182 ///
3183 /// assert_eq!("hello.world-2", map["host"]);
3184 /// ```
3185 pub fn into_mut(self) -> &'a mut T {
3186 &mut self.map.entries[self.index].value
3187 }
3188
3189 /// Sets the value of the entry.
3190 ///
3191 /// All previous values associated with the entry are removed and the first
3192 /// one is returned. See `insert_mult` for an API that returns all values.
3193 ///
3194 /// # Examples
3195 ///
3196 /// ```
3197 /// # use http::header::{HeaderMap, Entry, HOST};
3198 /// let mut map = HeaderMap::new();
3199 /// map.insert(HOST, "hello.world".parse().unwrap());
3200 ///
3201 /// if let Entry::Occupied(mut e) = map.entry("host") {
3202 /// let mut prev = e.insert("earth".parse().unwrap());
3203 /// assert_eq!("hello.world", prev);
3204 /// }
3205 ///
3206 /// assert_eq!("earth", map["host"]);
3207 /// ```
3208 pub fn insert(&mut self, value: T) -> T {
3209 self.map.insert_occupied(self.index, value)
3210 }
3211
3212 /// Sets the value of the entry.
3213 ///
3214 /// This function does the same as `insert` except it returns an iterator
3215 /// that yields all values previously associated with the key.
3216 ///
3217 /// # Examples
3218 ///
3219 /// ```
3220 /// # use http::header::{HeaderMap, Entry, HOST};
3221 /// let mut map = HeaderMap::new();
3222 /// map.insert(HOST, "world".parse().unwrap());
3223 /// map.append(HOST, "world2".parse().unwrap());
3224 ///
3225 /// if let Entry::Occupied(mut e) = map.entry("host") {
3226 /// let mut prev = e.insert_mult("earth".parse().unwrap());
3227 /// assert_eq!("world", prev.next().unwrap());
3228 /// assert_eq!("world2", prev.next().unwrap());
3229 /// assert!(prev.next().is_none());
3230 /// }
3231 ///
3232 /// assert_eq!("earth", map["host"]);
3233 /// ```
3234 pub fn insert_mult(&mut self, value: T) -> ValueDrain<'_, T> {
3235 self.map.insert_occupied_mult(self.index, value)
3236 }
3237
3238 /// Insert the value into the entry.
3239 ///
3240 /// The new value is appended to the end of the entry's value list. All
3241 /// previous values associated with the entry are retained.
3242 ///
3243 /// # Examples
3244 ///
3245 /// ```
3246 /// # use http::header::{HeaderMap, Entry, HOST};
3247 /// let mut map = HeaderMap::new();
3248 /// map.insert(HOST, "world".parse().unwrap());
3249 ///
3250 /// if let Entry::Occupied(mut e) = map.entry("host") {
3251 /// e.append("earth".parse().unwrap());
3252 /// }
3253 ///
3254 /// let values = map.get_all("host");
3255 /// let mut i = values.iter();
3256 /// assert_eq!("world", *i.next().unwrap());
3257 /// assert_eq!("earth", *i.next().unwrap());
3258 /// ```
3259 pub fn append(&mut self, value: T) {
3260 let idx = self.index;
3261 let entry = &mut self.map.entries[idx];
3262 append_value(idx, entry, &mut self.map.extra_values, value);
3263 }
3264
3265 /// Remove the entry from the map.
3266 ///
3267 /// All values associated with the entry are removed and the first one is
3268 /// returned. See `remove_entry_mult` for an API that returns all values.
3269 ///
3270 /// # Examples
3271 ///
3272 /// ```
3273 /// # use http::header::{HeaderMap, Entry, HOST};
3274 /// let mut map = HeaderMap::new();
3275 /// map.insert(HOST, "world".parse().unwrap());
3276 ///
3277 /// if let Entry::Occupied(e) = map.entry("host") {
3278 /// let mut prev = e.remove();
3279 /// assert_eq!("world", prev);
3280 /// }
3281 ///
3282 /// assert!(!map.contains_key("host"));
3283 /// ```
3284 pub fn remove(self) -> T {
3285 self.remove_entry().1
3286 }
3287
3288 /// Remove the entry from the map.
3289 ///
3290 /// The key and all values associated with the entry are removed and the
3291 /// first one is returned. See `remove_entry_mult` for an API that returns
3292 /// all values.
3293 ///
3294 /// # Examples
3295 ///
3296 /// ```
3297 /// # use http::header::{HeaderMap, Entry, HOST};
3298 /// let mut map = HeaderMap::new();
3299 /// map.insert(HOST, "world".parse().unwrap());
3300 ///
3301 /// if let Entry::Occupied(e) = map.entry("host") {
3302 /// let (key, mut prev) = e.remove_entry();
3303 /// assert_eq!("host", key.as_str());
3304 /// assert_eq!("world", prev);
3305 /// }
3306 ///
3307 /// assert!(!map.contains_key("host"));
3308 /// ```
3309 pub fn remove_entry(self) -> (HeaderName, T) {
3310 if let Some(links) = self.map.entries[self.index].links {
3311 self.map.remove_all_extra_values(links.next);
3312 }
3313
3314 let entry = self.map.remove_found(self.probe, self.index);
3315
3316 (entry.key, entry.value)
3317 }
3318
3319 /// Remove the entry from the map.
3320 ///
3321 /// The key and all values associated with the entry are removed and
3322 /// returned.
3323 pub fn remove_entry_mult(self) -> (HeaderName, ValueDrain<'a, T>) {
3324 let raw_links = self.map.raw_links();
3325 let extra_values = &mut self.map.extra_values;
3326
3327 let next = self.map.entries[self.index]
3328 .links
3329 .map(|l| drain_all_extra_values(raw_links, extra_values, l.next).into_iter());
3330
3331 let entry = self.map.remove_found(self.probe, self.index);
3332
3333 let drain = ValueDrain {
3334 first: Some(entry.value),
3335 next,
3336 lt: PhantomData,
3337 };
3338 (entry.key, drain)
3339 }
3340
3341 /// Returns an iterator visiting all values associated with the entry.
3342 ///
3343 /// Values are iterated in insertion order.
3344 ///
3345 /// # Examples
3346 ///
3347 /// ```
3348 /// # use http::header::{HeaderMap, Entry, HOST};
3349 /// let mut map = HeaderMap::new();
3350 /// map.insert(HOST, "world".parse().unwrap());
3351 /// map.append(HOST, "earth".parse().unwrap());
3352 ///
3353 /// if let Entry::Occupied(e) = map.entry("host") {
3354 /// let mut iter = e.iter();
3355 /// assert_eq!(&"world", iter.next().unwrap());
3356 /// assert_eq!(&"earth", iter.next().unwrap());
3357 /// assert!(iter.next().is_none());
3358 /// }
3359 /// ```
3360 pub fn iter(&self) -> ValueIter<'_, T> {
3361 self.map.value_iter(Some(self.index))
3362 }
3363
3364 /// Returns an iterator mutably visiting all values associated with the
3365 /// entry.
3366 ///
3367 /// Values are iterated in insertion order.
3368 ///
3369 /// # Examples
3370 ///
3371 /// ```
3372 /// # use http::header::{HeaderMap, Entry, HOST};
3373 /// let mut map = HeaderMap::default();
3374 /// map.insert(HOST, "world".to_string());
3375 /// map.append(HOST, "earth".to_string());
3376 ///
3377 /// if let Entry::Occupied(mut e) = map.entry("host") {
3378 /// for e in e.iter_mut() {
3379 /// e.push_str("-boop");
3380 /// }
3381 /// }
3382 ///
3383 /// let mut values = map.get_all("host");
3384 /// let mut i = values.iter();
3385 /// assert_eq!(&"world-boop", i.next().unwrap());
3386 /// assert_eq!(&"earth-boop", i.next().unwrap());
3387 /// ```
3388 pub fn iter_mut(&mut self) -> ValueIterMut<'_, T> {
3389 self.map.value_iter_mut(self.index)
3390 }
3391}
3392
3393impl<'a, T> IntoIterator for OccupiedEntry<'a, T> {
3394 type Item = &'a mut T;
3395 type IntoIter = ValueIterMut<'a, T>;
3396
3397 fn into_iter(self) -> ValueIterMut<'a, T> {
3398 self.map.value_iter_mut(self.index)
3399 }
3400}
3401
3402impl<'a, 'b: 'a, T> IntoIterator for &'b OccupiedEntry<'a, T> {
3403 type Item = &'a T;
3404 type IntoIter = ValueIter<'a, T>;
3405
3406 fn into_iter(self) -> ValueIter<'a, T> {
3407 self.iter()
3408 }
3409}
3410
3411impl<'a, 'b: 'a, T> IntoIterator for &'b mut OccupiedEntry<'a, T> {
3412 type Item = &'a mut T;
3413 type IntoIter = ValueIterMut<'a, T>;
3414
3415 fn into_iter(self) -> ValueIterMut<'a, T> {
3416 self.iter_mut()
3417 }
3418}
3419
3420// ===== impl ValueDrain =====
3421
3422impl<'a, T> Iterator for ValueDrain<'a, T> {
3423 type Item = T;
3424
3425 fn next(&mut self) -> Option<T> {
3426 if self.first.is_some() {
3427 self.first.take()
3428 } else if let Some(ref mut extras) = self.next {
3429 extras.next()
3430 } else {
3431 None
3432 }
3433 }
3434
3435 fn size_hint(&self) -> (usize, Option<usize>) {
3436 match (&self.first, &self.next) {
3437 // Exactly 1
3438 (&Some(_), &None) => (1, Some(1)),
3439 // 1 + extras
3440 (&Some(_), Some(extras)) => {
3441 let (l, u) = extras.size_hint();
3442 (l + 1, u.map(|u| u + 1))
3443 }
3444 // Extras only
3445 (&None, Some(extras)) => extras.size_hint(),
3446 // No more
3447 (&None, &None) => (0, Some(0)),
3448 }
3449 }
3450}
3451
3452impl<'a, T> FusedIterator for ValueDrain<'a, T> {}
3453
3454impl<'a, T> Drop for ValueDrain<'a, T> {
3455 fn drop(&mut self) {
3456 for _ in self.by_ref() {}
3457 }
3458}
3459
3460unsafe impl<'a, T: Sync> Sync for ValueDrain<'a, T> {}
3461unsafe impl<'a, T: Send> Send for ValueDrain<'a, T> {}
3462
3463// ===== impl RawLinks =====
3464
3465impl<T> Clone for RawLinks<T> {
3466 fn clone(&self) -> RawLinks<T> {
3467 *self
3468 }
3469}
3470
3471impl<T> Copy for RawLinks<T> {}
3472
3473impl<T> ops::Index<usize> for RawLinks<T> {
3474 type Output = Option<Links>;
3475
3476 fn index(&self, idx: usize) -> &Self::Output {
3477 unsafe { &(*self.0)[idx].links }
3478 }
3479}
3480
3481impl<T> ops::IndexMut<usize> for RawLinks<T> {
3482 fn index_mut(&mut self, idx: usize) -> &mut Self::Output {
3483 unsafe { &mut (*self.0)[idx].links }
3484 }
3485}
3486
3487// ===== impl Pos =====
3488
3489impl Pos {
3490 #[inline]
3491 fn new(index: usize, hash: HashValue) -> Self {
3492 debug_assert!(index < MAX_SIZE);
3493 Pos {
3494 index: index as Size,
3495 hash,
3496 }
3497 }
3498
3499 #[inline]
3500 fn none() -> Self {
3501 Pos {
3502 index: !0,
3503 hash: HashValue(0),
3504 }
3505 }
3506
3507 #[inline]
3508 fn is_some(&self) -> bool {
3509 !self.is_none()
3510 }
3511
3512 #[inline]
3513 fn is_none(&self) -> bool {
3514 self.index == !0
3515 }
3516
3517 #[inline]
3518 fn resolve(&self) -> Option<(usize, HashValue)> {
3519 if self.is_some() {
3520 Some((self.index as usize, self.hash))
3521 } else {
3522 None
3523 }
3524 }
3525}
3526
3527impl Danger {
3528 fn is_red(&self) -> bool {
3529 matches!(*self, Danger::Red(_))
3530 }
3531
3532 fn set_red(&mut self) {
3533 debug_assert!(self.is_yellow());
3534 *self = Danger::Red(RandomState::new());
3535 }
3536
3537 fn is_yellow(&self) -> bool {
3538 matches!(*self, Danger::Yellow)
3539 }
3540
3541 fn set_yellow(&mut self) {
3542 if let Danger::Green = *self {
3543 *self = Danger::Yellow;
3544 }
3545 }
3546
3547 fn set_green(&mut self) {
3548 debug_assert!(self.is_yellow());
3549 *self = Danger::Green;
3550 }
3551}
3552
3553// ===== impl MaxSizeReached =====
3554
3555impl MaxSizeReached {
3556 fn new() -> Self {
3557 MaxSizeReached { _priv: () }
3558 }
3559}
3560
3561impl fmt::Debug for MaxSizeReached {
3562 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
3563 f.debug_struct("MaxSizeReached")
3564 // skip _priv noise
3565 .finish()
3566 }
3567}
3568
3569impl fmt::Display for MaxSizeReached {
3570 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3571 f.write_str("max size reached")
3572 }
3573}
3574
3575impl std::error::Error for MaxSizeReached {}
3576
3577// ===== impl Utils =====
3578
3579#[inline]
3580fn usable_capacity(cap: usize) -> usize {
3581 cap - cap / 4
3582}
3583
3584#[inline]
3585fn to_raw_capacity(n: usize) -> usize {
3586 match n.checked_add(n / 3) {
3587 Some(n) => n,
3588 None => panic!(
3589 "requested capacity {} too large: overflow while converting to raw capacity",
3590 n
3591 ),
3592 }
3593}
3594
3595#[inline]
3596fn desired_pos(mask: Size, hash: HashValue) -> usize {
3597 (hash.0 & mask) as usize
3598}
3599
3600/// The number of steps that `current` is forward of the desired position for hash
3601#[inline]
3602fn probe_distance(mask: Size, hash: HashValue, current: usize) -> usize {
3603 current.wrapping_sub(desired_pos(mask, hash)) & mask as usize
3604}
3605
3606fn hash_elem_using<K>(danger: &Danger, k: &K) -> HashValue
3607where
3608 K: Hash + ?Sized,
3609{
3610 use fnv::FnvHasher;
3611
3612 const MASK: u64 = (MAX_SIZE as u64) - 1;
3613
3614 let hash = match *danger {
3615 // Safe hash
3616 Danger::Red(ref hasher) => {
3617 let mut h = hasher.build_hasher();
3618 k.hash(&mut h);
3619 h.finish()
3620 }
3621 // Fast hash
3622 _ => {
3623 let mut h = FnvHasher::default();
3624 k.hash(&mut h);
3625 h.finish()
3626 }
3627 };
3628
3629 HashValue((hash & MASK) as u16)
3630}
3631
3632/*
3633 *
3634 * ===== impl IntoHeaderName / AsHeaderName =====
3635 *
3636 */
3637
3638mod into_header_name {
3639 use super::{Entry, HdrName, HeaderMap, HeaderName, MaxSizeReached};
3640
3641 /// A marker trait used to identify values that can be used as insert keys
3642 /// to a `HeaderMap`.
3643 pub trait IntoHeaderName: Sealed {}
3644
3645 // All methods are on this pub(super) trait, instead of `IntoHeaderName`,
3646 // so that they aren't publicly exposed to the world.
3647 //
3648 // Being on the `IntoHeaderName` trait would mean users could call
3649 // `"host".insert(&mut map, "localhost")`.
3650 //
3651 // Ultimately, this allows us to adjust the signatures of these methods
3652 // without breaking any external crate.
3653 pub trait Sealed {
3654 #[doc(hidden)]
3655 fn try_insert<T>(self, map: &mut HeaderMap<T>, val: T)
3656 -> Result<Option<T>, MaxSizeReached>;
3657
3658 #[doc(hidden)]
3659 fn try_append<T>(self, map: &mut HeaderMap<T>, val: T) -> Result<bool, MaxSizeReached>;
3660
3661 #[doc(hidden)]
3662 fn try_entry<T>(self, map: &mut HeaderMap<T>) -> Result<Entry<'_, T>, MaxSizeReached>;
3663 }
3664
3665 // ==== impls ====
3666
3667 impl Sealed for HeaderName {
3668 #[inline]
3669 fn try_insert<T>(
3670 self,
3671 map: &mut HeaderMap<T>,
3672 val: T,
3673 ) -> Result<Option<T>, MaxSizeReached> {
3674 map.try_insert2(self, val)
3675 }
3676
3677 #[inline]
3678 fn try_append<T>(self, map: &mut HeaderMap<T>, val: T) -> Result<bool, MaxSizeReached> {
3679 map.try_append2(self, val)
3680 }
3681
3682 #[inline]
3683 fn try_entry<T>(self, map: &mut HeaderMap<T>) -> Result<Entry<'_, T>, MaxSizeReached> {
3684 map.try_entry2(self)
3685 }
3686 }
3687
3688 impl IntoHeaderName for HeaderName {}
3689
3690 impl<'a> Sealed for &'a HeaderName {
3691 #[inline]
3692 fn try_insert<T>(
3693 self,
3694 map: &mut HeaderMap<T>,
3695 val: T,
3696 ) -> Result<Option<T>, MaxSizeReached> {
3697 map.try_insert2(self, val)
3698 }
3699 #[inline]
3700 fn try_append<T>(self, map: &mut HeaderMap<T>, val: T) -> Result<bool, MaxSizeReached> {
3701 map.try_append2(self, val)
3702 }
3703
3704 #[inline]
3705 fn try_entry<T>(self, map: &mut HeaderMap<T>) -> Result<Entry<'_, T>, MaxSizeReached> {
3706 map.try_entry2(self)
3707 }
3708 }
3709
3710 impl<'a> IntoHeaderName for &'a HeaderName {}
3711
3712 impl Sealed for &'static str {
3713 #[inline]
3714 fn try_insert<T>(
3715 self,
3716 map: &mut HeaderMap<T>,
3717 val: T,
3718 ) -> Result<Option<T>, MaxSizeReached> {
3719 HdrName::from_static(self, move |hdr| map.try_insert2(hdr, val))
3720 }
3721 #[inline]
3722 fn try_append<T>(self, map: &mut HeaderMap<T>, val: T) -> Result<bool, MaxSizeReached> {
3723 HdrName::from_static(self, move |hdr| map.try_append2(hdr, val))
3724 }
3725
3726 #[inline]
3727 fn try_entry<T>(self, map: &mut HeaderMap<T>) -> Result<Entry<'_, T>, MaxSizeReached> {
3728 HdrName::from_static(self, move |hdr| map.try_entry2(hdr))
3729 }
3730 }
3731
3732 impl IntoHeaderName for &'static str {}
3733}
3734
3735mod as_header_name {
3736 use super::{Entry, HdrName, HeaderMap, HeaderName, InvalidHeaderName, MaxSizeReached};
3737
3738 /// A marker trait used to identify values that can be used as search keys
3739 /// to a `HeaderMap`.
3740 pub trait AsHeaderName: Sealed {}
3741
3742 // Debug not currently needed, save on compiling it
3743 #[allow(missing_debug_implementations)]
3744 pub enum TryEntryError {
3745 InvalidHeaderName(InvalidHeaderName),
3746 MaxSizeReached(MaxSizeReached),
3747 }
3748
3749 impl From<InvalidHeaderName> for TryEntryError {
3750 fn from(e: InvalidHeaderName) -> TryEntryError {
3751 TryEntryError::InvalidHeaderName(e)
3752 }
3753 }
3754
3755 impl From<MaxSizeReached> for TryEntryError {
3756 fn from(e: MaxSizeReached) -> TryEntryError {
3757 TryEntryError::MaxSizeReached(e)
3758 }
3759 }
3760
3761 // All methods are on this pub(super) trait, instead of `AsHeaderName`,
3762 // so that they aren't publicly exposed to the world.
3763 //
3764 // Being on the `AsHeaderName` trait would mean users could call
3765 // `"host".find(&map)`.
3766 //
3767 // Ultimately, this allows us to adjust the signatures of these methods
3768 // without breaking any external crate.
3769 pub trait Sealed {
3770 #[doc(hidden)]
3771 fn try_entry<T>(self, map: &mut HeaderMap<T>) -> Result<Entry<'_, T>, TryEntryError>;
3772
3773 #[doc(hidden)]
3774 fn find<T>(&self, map: &HeaderMap<T>) -> Option<(usize, usize)>;
3775
3776 #[doc(hidden)]
3777 fn as_str(&self) -> &str;
3778 }
3779
3780 // ==== impls ====
3781
3782 impl Sealed for HeaderName {
3783 #[inline]
3784 fn try_entry<T>(self, map: &mut HeaderMap<T>) -> Result<Entry<'_, T>, TryEntryError> {
3785 Ok(map.try_entry2(self)?)
3786 }
3787
3788 #[inline]
3789 fn find<T>(&self, map: &HeaderMap<T>) -> Option<(usize, usize)> {
3790 map.find(self)
3791 }
3792
3793 fn as_str(&self) -> &str {
3794 <HeaderName>::as_str(self)
3795 }
3796 }
3797
3798 impl AsHeaderName for HeaderName {}
3799
3800 impl<'a> Sealed for &'a HeaderName {
3801 #[inline]
3802 fn try_entry<T>(self, map: &mut HeaderMap<T>) -> Result<Entry<'_, T>, TryEntryError> {
3803 Ok(map.try_entry2(self)?)
3804 }
3805
3806 #[inline]
3807 fn find<T>(&self, map: &HeaderMap<T>) -> Option<(usize, usize)> {
3808 map.find(*self)
3809 }
3810
3811 fn as_str(&self) -> &str {
3812 <HeaderName>::as_str(self)
3813 }
3814 }
3815
3816 impl<'a> AsHeaderName for &'a HeaderName {}
3817
3818 impl<'a> Sealed for &'a str {
3819 #[inline]
3820 fn try_entry<T>(self, map: &mut HeaderMap<T>) -> Result<Entry<'_, T>, TryEntryError> {
3821 Ok(HdrName::from_bytes(self.as_bytes(), move |hdr| {
3822 map.try_entry2(hdr)
3823 })??)
3824 }
3825
3826 #[inline]
3827 fn find<T>(&self, map: &HeaderMap<T>) -> Option<(usize, usize)> {
3828 HdrName::from_bytes(self.as_bytes(), move |hdr| map.find(&hdr)).unwrap_or(None)
3829 }
3830
3831 fn as_str(&self) -> &str {
3832 self
3833 }
3834 }
3835
3836 impl<'a> AsHeaderName for &'a str {}
3837
3838 impl Sealed for String {
3839 #[inline]
3840 fn try_entry<T>(self, map: &mut HeaderMap<T>) -> Result<Entry<'_, T>, TryEntryError> {
3841 self.as_str().try_entry(map)
3842 }
3843
3844 #[inline]
3845 fn find<T>(&self, map: &HeaderMap<T>) -> Option<(usize, usize)> {
3846 Sealed::find(&self.as_str(), map)
3847 }
3848
3849 fn as_str(&self) -> &str {
3850 self
3851 }
3852 }
3853
3854 impl AsHeaderName for String {}
3855
3856 impl<'a> Sealed for &'a String {
3857 #[inline]
3858 fn try_entry<T>(self, map: &mut HeaderMap<T>) -> Result<Entry<'_, T>, TryEntryError> {
3859 self.as_str().try_entry(map)
3860 }
3861
3862 #[inline]
3863 fn find<T>(&self, map: &HeaderMap<T>) -> Option<(usize, usize)> {
3864 Sealed::find(*self, map)
3865 }
3866
3867 fn as_str(&self) -> &str {
3868 self
3869 }
3870 }
3871
3872 impl<'a> AsHeaderName for &'a String {}
3873}
3874
3875#[test]
3876fn test_bounds() {
3877 fn check_bounds<T: Send + Send>() {}
3878
3879 check_bounds::<HeaderMap<()>>();
3880 check_bounds::<Iter<'static, ()>>();
3881 check_bounds::<IterMut<'static, ()>>();
3882 check_bounds::<Keys<'static, ()>>();
3883 check_bounds::<Values<'static, ()>>();
3884 check_bounds::<ValuesMut<'static, ()>>();
3885 check_bounds::<Drain<'static, ()>>();
3886 check_bounds::<GetAll<'static, ()>>();
3887 check_bounds::<Entry<'static, ()>>();
3888 check_bounds::<VacantEntry<'static, ()>>();
3889 check_bounds::<OccupiedEntry<'static, ()>>();
3890 check_bounds::<ValueIter<'static, ()>>();
3891 check_bounds::<ValueIterMut<'static, ()>>();
3892 check_bounds::<ValueDrain<'static, ()>>();
3893}
3894
3895#[test]
3896fn skip_duplicates_during_key_iteration() {
3897 let mut map = HeaderMap::new();
3898 map.try_append("a", HeaderValue::from_static("a")).unwrap();
3899 map.try_append("a", HeaderValue::from_static("b")).unwrap();
3900 assert_eq!(map.keys().count(), map.keys_len());
3901}