dalek_ff_group/
field.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
use core::{
  ops::{Add, AddAssign, Sub, SubAssign, Neg, Mul, MulAssign},
  iter::{Sum, Product},
};

use zeroize::Zeroize;
use rand_core::RngCore;

use subtle::{
  Choice, CtOption, ConstantTimeEq, ConstantTimeLess, ConditionallyNegatable,
  ConditionallySelectable,
};

use crypto_bigint::{
  Integer, NonZero, Encoding, U256, U512,
  modular::constant_mod::{ResidueParams, Residue},
  impl_modulus,
};

use group::ff::{Field, PrimeField, FieldBits, PrimeFieldBits};

use crate::{u8_from_bool, constant_time, math_op, math};

// 2 ** 255 - 19
// Uses saturating_sub because checked_sub isn't available at compile time
const MODULUS: U256 = U256::from_u8(1).shl_vartime(255).saturating_sub(&U256::from_u8(19));
const WIDE_MODULUS: U512 = U256::ZERO.concat(&MODULUS);

impl_modulus!(
  FieldModulus,
  U256,
  // 2 ** 255 - 19
  "7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed"
);
type ResidueType = Residue<FieldModulus, { FieldModulus::LIMBS }>;

/// A constant-time implementation of the Ed25519 field.
#[derive(Clone, Copy, PartialEq, Eq, Default, Debug)]
pub struct FieldElement(ResidueType);

// Square root of -1.
// Formula from RFC-8032 (modp_sqrt_m1/sqrt8k5 z)
// 2 ** ((MODULUS - 1) // 4) % MODULUS
const SQRT_M1: FieldElement = FieldElement(
  ResidueType::new(&U256::from_u8(2))
    .pow(&MODULUS.saturating_sub(&U256::ONE).wrapping_div(&U256::from_u8(4))),
);

// Constant useful in calculating square roots (RFC-8032 sqrt8k5's exponent used to calculate y)
const MOD_3_8: FieldElement = FieldElement(ResidueType::new(
  &MODULUS.saturating_add(&U256::from_u8(3)).wrapping_div(&U256::from_u8(8)),
));

// Constant useful in sqrt_ratio_i (sqrt(u / v))
const MOD_5_8: FieldElement = FieldElement(ResidueType::sub(&MOD_3_8.0, &ResidueType::ONE));

fn reduce(x: U512) -> ResidueType {
  ResidueType::new(&U256::from_le_slice(
    &x.rem(&NonZero::new(WIDE_MODULUS).unwrap()).to_le_bytes()[.. 32],
  ))
}

constant_time!(FieldElement, ResidueType);
math!(
  FieldElement,
  FieldElement,
  |x: ResidueType, y: ResidueType| x.add(&y),
  |x: ResidueType, y: ResidueType| x.sub(&y),
  |x: ResidueType, y: ResidueType| x.mul(&y)
);

macro_rules! from_wrapper {
  ($uint: ident) => {
    impl From<$uint> for FieldElement {
      fn from(a: $uint) -> FieldElement {
        Self(ResidueType::new(&U256::from(a)))
      }
    }
  };
}

from_wrapper!(u8);
from_wrapper!(u16);
from_wrapper!(u32);
from_wrapper!(u64);
from_wrapper!(u128);

impl Neg for FieldElement {
  type Output = Self;
  fn neg(self) -> Self::Output {
    Self(self.0.neg())
  }
}

impl<'a> Neg for &'a FieldElement {
  type Output = FieldElement;
  fn neg(self) -> Self::Output {
    (*self).neg()
  }
}

impl Field for FieldElement {
  const ZERO: Self = Self(ResidueType::ZERO);
  const ONE: Self = Self(ResidueType::ONE);

  fn random(mut rng: impl RngCore) -> Self {
    let mut bytes = [0; 64];
    rng.fill_bytes(&mut bytes);
    FieldElement(reduce(U512::from_le_bytes(bytes)))
  }

  fn square(&self) -> Self {
    FieldElement(self.0.square())
  }
  fn double(&self) -> Self {
    FieldElement(self.0.add(&self.0))
  }

  fn invert(&self) -> CtOption<Self> {
    const NEG_2: FieldElement =
      FieldElement(ResidueType::new(&MODULUS.saturating_sub(&U256::from_u8(2))));
    CtOption::new(self.pow(NEG_2), !self.is_zero())
  }

  // RFC-8032 sqrt8k5
  fn sqrt(&self) -> CtOption<Self> {
    let tv1 = self.pow(MOD_3_8);
    let tv2 = tv1 * SQRT_M1;
    let candidate = Self::conditional_select(&tv2, &tv1, tv1.square().ct_eq(self));
    CtOption::new(candidate, candidate.square().ct_eq(self))
  }

  fn sqrt_ratio(u: &FieldElement, v: &FieldElement) -> (Choice, FieldElement) {
    let i = SQRT_M1;

    let u = *u;
    let v = *v;

    let v3 = v.square() * v;
    let v7 = v3.square() * v;
    let mut r = (u * v3) * (u * v7).pow(MOD_5_8);

    let check = v * r.square();
    let correct_sign = check.ct_eq(&u);
    let flipped_sign = check.ct_eq(&(-u));
    let flipped_sign_i = check.ct_eq(&((-u) * i));

    r.conditional_assign(&(r * i), flipped_sign | flipped_sign_i);

    let r_is_negative = r.is_odd();
    r.conditional_negate(r_is_negative);

    (correct_sign | flipped_sign, r)
  }
}

impl PrimeField for FieldElement {
  type Repr = [u8; 32];

  // Big endian representation of the modulus
  const MODULUS: &'static str = "7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed";

  const NUM_BITS: u32 = 255;
  const CAPACITY: u32 = 254;

  const TWO_INV: Self = FieldElement(ResidueType::new(&U256::from_u8(2)).invert().0);

  // This was calculated with the method from the ff crate docs
  // SageMath GF(modulus).primitive_element()
  const MULTIPLICATIVE_GENERATOR: Self = Self(ResidueType::new(&U256::from_u8(2)));
  // This was set per the specification in the ff crate docs
  // The number of leading zero bits in the little-endian bit representation of (modulus - 1)
  const S: u32 = 2;

  // This was calculated via the formula from the ff crate docs
  // Self::MULTIPLICATIVE_GENERATOR ** ((modulus - 1) >> Self::S)
  const ROOT_OF_UNITY: Self = FieldElement(ResidueType::new(&U256::from_be_hex(
    "2b8324804fc1df0b2b4d00993dfbd7a72f431806ad2fe478c4ee1b274a0ea0b0",
  )));
  // Self::ROOT_OF_UNITY.invert()
  const ROOT_OF_UNITY_INV: Self = FieldElement(Self::ROOT_OF_UNITY.0.invert().0);

  // This was calculated via the formula from the ff crate docs
  // Self::MULTIPLICATIVE_GENERATOR ** (2 ** Self::S)
  const DELTA: Self = FieldElement(ResidueType::new(&U256::from_be_hex(
    "0000000000000000000000000000000000000000000000000000000000000010",
  )));

  fn from_repr(bytes: [u8; 32]) -> CtOption<Self> {
    let res = U256::from_le_bytes(bytes);
    CtOption::new(Self(ResidueType::new(&res)), res.ct_lt(&MODULUS))
  }
  fn to_repr(&self) -> [u8; 32] {
    self.0.retrieve().to_le_bytes()
  }

  fn is_odd(&self) -> Choice {
    self.0.retrieve().is_odd()
  }

  fn from_u128(num: u128) -> Self {
    Self::from(num)
  }
}

impl PrimeFieldBits for FieldElement {
  type ReprBits = [u8; 32];

  fn to_le_bits(&self) -> FieldBits<Self::ReprBits> {
    self.to_repr().into()
  }

  fn char_le_bits() -> FieldBits<Self::ReprBits> {
    MODULUS.to_le_bytes().into()
  }
}

impl FieldElement {
  /// Interpret the value as a little-endian integer, square it, and reduce it into a FieldElement.
  pub fn from_square(value: [u8; 32]) -> FieldElement {
    let value = U256::from_le_bytes(value);
    FieldElement(reduce(U512::from(value.mul_wide(&value))))
  }

  /// Perform an exponentiation.
  pub fn pow(&self, other: FieldElement) -> FieldElement {
    let mut table = [FieldElement::ONE; 16];
    table[1] = *self;
    for i in 2 .. 16 {
      table[i] = table[i - 1] * self;
    }

    let mut res = FieldElement::ONE;
    let mut bits = 0;
    for (i, mut bit) in other.to_le_bits().iter_mut().rev().enumerate() {
      bits <<= 1;
      let mut bit = u8_from_bool(&mut bit);
      bits |= bit;
      bit.zeroize();

      if ((i + 1) % 4) == 0 {
        if i != 3 {
          for _ in 0 .. 4 {
            res *= res;
          }
        }

        let mut scale_by = FieldElement::ONE;
        #[allow(clippy::needless_range_loop)]
        for i in 0 .. 16 {
          #[allow(clippy::cast_possible_truncation)] // Safe since 0 .. 16
          {
            scale_by = <_>::conditional_select(&scale_by, &table[i], bits.ct_eq(&(i as u8)));
          }
        }
        res *= scale_by;
        bits = 0;
      }
    }
    res
  }

  /// The square root of u/v, as used for Ed25519 point decoding (RFC 8032 5.1.3) and within
  /// Ristretto (5.1 Extracting an Inverse Square Root).
  ///
  /// The result is only a valid square root if the Choice is true.
  /// RFC 8032 simply fails if there isn't a square root, leaving any return value undefined.
  /// Ristretto explicitly returns 0 or sqrt((SQRT_M1 * u) / v).
  pub fn sqrt_ratio_i(u: FieldElement, v: FieldElement) -> (Choice, FieldElement) {
    let i = SQRT_M1;

    let v3 = v.square() * v;
    let v7 = v3.square() * v;
    // Candidate root
    let mut r = (u * v3) * (u * v7).pow(MOD_5_8);

    // 8032 3.1
    let check = v * r.square();
    let correct_sign = check.ct_eq(&u);
    // 8032 3.2 conditional
    let neg_u = -u;
    let flipped_sign = check.ct_eq(&neg_u);
    // Ristretto Step 5
    let flipped_sign_i = check.ct_eq(&(neg_u * i));

    // 3.2 set
    r.conditional_assign(&(r * i), flipped_sign | flipped_sign_i);

    // Always return the even root, per Ristretto
    // This doesn't break Ed25519 point decoding as that doesn't expect these steps to return a
    // specific root
    // Ed25519 points include a dedicated sign bit to determine which root to use, so at worst
    // this is a pointless inefficiency
    r.conditional_negate(r.is_odd());

    (correct_sign | flipped_sign, r)
  }
}

impl Sum<FieldElement> for FieldElement {
  fn sum<I: Iterator<Item = FieldElement>>(iter: I) -> FieldElement {
    let mut res = FieldElement::ZERO;
    for item in iter {
      res += item;
    }
    res
  }
}

impl<'a> Sum<&'a FieldElement> for FieldElement {
  fn sum<I: Iterator<Item = &'a FieldElement>>(iter: I) -> FieldElement {
    iter.copied().sum()
  }
}

impl Product<FieldElement> for FieldElement {
  fn product<I: Iterator<Item = FieldElement>>(iter: I) -> FieldElement {
    let mut res = FieldElement::ONE;
    for item in iter {
      res *= item;
    }
    res
  }
}

impl<'a> Product<&'a FieldElement> for FieldElement {
  fn product<I: Iterator<Item = &'a FieldElement>>(iter: I) -> FieldElement {
    iter.copied().product()
  }
}

#[test]
fn test_wide_modulus() {
  let mut wide = [0; 64];
  wide[.. 32].copy_from_slice(&MODULUS.to_le_bytes());
  assert_eq!(wide, WIDE_MODULUS.to_le_bytes());
}

#[test]
fn test_sqrt_m1() {
  // Test equivalence against the known constant value
  const SQRT_M1_MAGIC: U256 =
    U256::from_be_hex("2b8324804fc1df0b2b4d00993dfbd7a72f431806ad2fe478c4ee1b274a0ea0b0");
  assert_eq!(SQRT_M1.0.retrieve(), SQRT_M1_MAGIC);

  // Also test equivalence against the result of the formula from RFC-8032 (modp_sqrt_m1/sqrt8k5 z)
  // 2 ** ((MODULUS - 1) // 4) % MODULUS
  assert_eq!(
    SQRT_M1,
    FieldElement::from(2u8).pow(FieldElement(ResidueType::new(
      &(FieldElement::ZERO - FieldElement::ONE).0.retrieve().wrapping_div(&U256::from(4u8))
    )))
  );
}

#[test]
fn test_field() {
  ff_group_tests::prime_field::test_prime_field_bits::<_, FieldElement>(&mut rand_core::OsRng);
}