tokio_util/sync/reusable_box.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
use std::alloc::Layout;
use std::fmt;
use std::future::{self, Future};
use std::mem::{self, ManuallyDrop};
use std::pin::Pin;
use std::ptr;
use std::task::{Context, Poll};
/// A reusable `Pin<Box<dyn Future<Output = T> + Send + 'a>>`.
///
/// This type lets you replace the future stored in the box without
/// reallocating when the size and alignment permits this.
pub struct ReusableBoxFuture<'a, T> {
boxed: Pin<Box<dyn Future<Output = T> + Send + 'a>>,
}
impl<'a, T> ReusableBoxFuture<'a, T> {
/// Create a new `ReusableBoxFuture<T>` containing the provided future.
pub fn new<F>(future: F) -> Self
where
F: Future<Output = T> + Send + 'a,
{
Self {
boxed: Box::pin(future),
}
}
/// Replace the future currently stored in this box.
///
/// This reallocates if and only if the layout of the provided future is
/// different from the layout of the currently stored future.
pub fn set<F>(&mut self, future: F)
where
F: Future<Output = T> + Send + 'a,
{
if let Err(future) = self.try_set(future) {
*self = Self::new(future);
}
}
/// Replace the future currently stored in this box.
///
/// This function never reallocates, but returns an error if the provided
/// future has a different size or alignment from the currently stored
/// future.
pub fn try_set<F>(&mut self, future: F) -> Result<(), F>
where
F: Future<Output = T> + Send + 'a,
{
// If we try to inline the contents of this function, the type checker complains because
// the bound `T: 'a` is not satisfied in the call to `pending()`. But by putting it in an
// inner function that doesn't have `T` as a generic parameter, we implicitly get the bound
// `F::Output: 'a` transitively through `F: 'a`, allowing us to call `pending()`.
#[inline(always)]
fn real_try_set<'a, F>(
this: &mut ReusableBoxFuture<'a, F::Output>,
future: F,
) -> Result<(), F>
where
F: Future + Send + 'a,
{
// future::Pending<T> is a ZST so this never allocates.
let boxed = mem::replace(&mut this.boxed, Box::pin(future::pending()));
reuse_pin_box(boxed, future, |boxed| this.boxed = Pin::from(boxed))
}
real_try_set(self, future)
}
/// Get a pinned reference to the underlying future.
pub fn get_pin(&mut self) -> Pin<&mut (dyn Future<Output = T> + Send)> {
self.boxed.as_mut()
}
/// Poll the future stored inside this box.
pub fn poll(&mut self, cx: &mut Context<'_>) -> Poll<T> {
self.get_pin().poll(cx)
}
}
impl<T> Future for ReusableBoxFuture<'_, T> {
type Output = T;
/// Poll the future stored inside this box.
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<T> {
Pin::into_inner(self).get_pin().poll(cx)
}
}
// The only method called on self.boxed is poll, which takes &mut self, so this
// struct being Sync does not permit any invalid access to the Future, even if
// the future is not Sync.
unsafe impl<T> Sync for ReusableBoxFuture<'_, T> {}
impl<T> fmt::Debug for ReusableBoxFuture<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("ReusableBoxFuture").finish()
}
}
fn reuse_pin_box<T: ?Sized, U, O, F>(boxed: Pin<Box<T>>, new_value: U, callback: F) -> Result<O, U>
where
F: FnOnce(Box<U>) -> O,
{
let layout = Layout::for_value::<T>(&*boxed);
if layout != Layout::new::<U>() {
return Err(new_value);
}
// SAFETY: We don't ever construct a non-pinned reference to the old `T` from now on, and we
// always drop the `T`.
let raw: *mut T = Box::into_raw(unsafe { Pin::into_inner_unchecked(boxed) });
// When dropping the old value panics, we still want to call `callback` — so move the rest of
// the code into a guard type.
let guard = CallOnDrop::new(|| {
let raw: *mut U = raw.cast::<U>();
unsafe { raw.write(new_value) };
// SAFETY:
// - `T` and `U` have the same layout.
// - `raw` comes from a `Box` that uses the same allocator as this one.
// - `raw` points to a valid instance of `U` (we just wrote it in).
let boxed = unsafe { Box::from_raw(raw) };
callback(boxed)
});
// Drop the old value.
unsafe { ptr::drop_in_place(raw) };
// Run the rest of the code.
Ok(guard.call())
}
struct CallOnDrop<O, F: FnOnce() -> O> {
f: ManuallyDrop<F>,
}
impl<O, F: FnOnce() -> O> CallOnDrop<O, F> {
fn new(f: F) -> Self {
let f = ManuallyDrop::new(f);
Self { f }
}
fn call(self) -> O {
let mut this = ManuallyDrop::new(self);
let f = unsafe { ManuallyDrop::take(&mut this.f) };
f()
}
}
impl<O, F: FnOnce() -> O> Drop for CallOnDrop<O, F> {
fn drop(&mut self) {
let f = unsafe { ManuallyDrop::take(&mut self.f) };
f();
}
}