rustls/suites.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
use core::fmt;
use crate::common_state::Protocol;
use crate::crypto::cipher::{AeadKey, Iv};
use crate::crypto::{self, KeyExchangeAlgorithm};
use crate::enums::{CipherSuite, SignatureAlgorithm, SignatureScheme};
use crate::msgs::handshake::ALL_KEY_EXCHANGE_ALGORITHMS;
#[cfg(feature = "tls12")]
use crate::tls12::Tls12CipherSuite;
use crate::tls13::Tls13CipherSuite;
#[cfg(feature = "tls12")]
use crate::versions::TLS12;
use crate::versions::{SupportedProtocolVersion, TLS13};
/// Common state for cipher suites (both for TLS 1.2 and TLS 1.3)
pub struct CipherSuiteCommon {
/// The TLS enumeration naming this cipher suite.
pub suite: CipherSuite,
/// Which hash function the suite uses.
pub hash_provider: &'static dyn crypto::hash::Hash,
/// Number of TCP-TLS messages that can be safely encrypted with a single key of this type
///
/// Once a `MessageEncrypter` produced for this suite has encrypted more than
/// `confidentiality_limit` messages, an attacker gains an advantage in distinguishing it
/// from an ideal pseudorandom permutation (PRP).
///
/// This is to be set on the assumption that messages are maximally sized --
/// each is 2<sup>14</sup> bytes. It **does not** consider confidentiality limits for
/// QUIC connections - see the [`quic::KeyBuilder.confidentiality_limit`] field for
/// this context.
///
/// For AES-GCM implementations, this should be set to 2<sup>24</sup> to limit attack
/// probability to one in 2<sup>60</sup>. See [AEBounds] (Table 1) and [draft-irtf-aead-limits-08]:
///
/// ```python
/// >>> p = 2 ** -60
/// >>> L = (2 ** 14 // 16) + 1
/// >>> qlim = (math.sqrt(p) * (2 ** (129 // 2)) - 1) / (L + 1)
/// >>> print(int(qlim).bit_length())
/// 24
/// ```
/// [AEBounds]: https://eprint.iacr.org/2024/051.pdf
/// [draft-irtf-aead-limits-08]: https://www.ietf.org/archive/id/draft-irtf-cfrg-aead-limits-08.html#section-5.1.1
///
/// For chacha20-poly1305 implementations, this should be set to `u64::MAX`:
/// see <https://www.ietf.org/archive/id/draft-irtf-cfrg-aead-limits-08.html#section-5.2.1>
pub confidentiality_limit: u64,
}
impl CipherSuiteCommon {
/// Return `true` if this is backed by a FIPS-approved implementation.
///
/// This means all the constituent parts that do cryptography return `true` for `fips()`.
pub fn fips(&self) -> bool {
self.hash_provider.fips()
}
}
/// A cipher suite supported by rustls.
///
/// This type carries both configuration and implementation. Compare with
/// [`CipherSuite`], which carries solely a cipher suite identifier.
#[derive(Clone, Copy, PartialEq)]
pub enum SupportedCipherSuite {
/// A TLS 1.2 cipher suite
#[cfg(feature = "tls12")]
Tls12(&'static Tls12CipherSuite),
/// A TLS 1.3 cipher suite
Tls13(&'static Tls13CipherSuite),
}
impl SupportedCipherSuite {
/// The cipher suite's identifier
pub fn suite(&self) -> CipherSuite {
self.common().suite
}
/// The hash function the ciphersuite uses.
pub(crate) fn hash_provider(&self) -> &'static dyn crypto::hash::Hash {
self.common().hash_provider
}
pub(crate) fn common(&self) -> &CipherSuiteCommon {
match self {
#[cfg(feature = "tls12")]
Self::Tls12(inner) => &inner.common,
Self::Tls13(inner) => &inner.common,
}
}
/// Return the inner `Tls13CipherSuite` for this suite, if it is a TLS1.3 suite.
pub fn tls13(&self) -> Option<&'static Tls13CipherSuite> {
match self {
#[cfg(feature = "tls12")]
Self::Tls12(_) => None,
Self::Tls13(inner) => Some(inner),
}
}
/// Return supported protocol version for the cipher suite.
pub fn version(&self) -> &'static SupportedProtocolVersion {
match self {
#[cfg(feature = "tls12")]
Self::Tls12(_) => &TLS12,
Self::Tls13(_) => &TLS13,
}
}
/// Return true if this suite is usable for a key only offering `sig_alg`
/// signatures. This resolves to true for all TLS1.3 suites.
pub fn usable_for_signature_algorithm(&self, _sig_alg: SignatureAlgorithm) -> bool {
match self {
Self::Tls13(_) => true, // no constraint expressed by ciphersuite (e.g., TLS1.3)
#[cfg(feature = "tls12")]
Self::Tls12(inner) => inner
.sign
.iter()
.any(|scheme| scheme.algorithm() == _sig_alg),
}
}
/// Return true if this suite is usable for the given [`Protocol`].
///
/// All cipher suites are usable for TCP-TLS. Only TLS1.3 suites
/// with `Tls13CipherSuite::quic` provided are usable for QUIC.
pub(crate) fn usable_for_protocol(&self, proto: Protocol) -> bool {
match proto {
Protocol::Tcp => true,
Protocol::Quic => self
.tls13()
.and_then(|cs| cs.quic)
.is_some(),
}
}
/// Return `true` if this is backed by a FIPS-approved implementation.
pub fn fips(&self) -> bool {
match self {
#[cfg(feature = "tls12")]
Self::Tls12(cs) => cs.fips(),
Self::Tls13(cs) => cs.fips(),
}
}
/// Return the list of `KeyExchangeAlgorithm`s supported by this cipher suite.
///
/// TLS 1.3 cipher suites support both ECDHE and DHE key exchange, but TLS 1.2 suites
/// support one or the other.
pub(crate) fn key_exchange_algorithms(&self) -> &[KeyExchangeAlgorithm] {
match self {
#[cfg(feature = "tls12")]
Self::Tls12(tls12) => core::slice::from_ref(&tls12.kx),
Self::Tls13(_) => ALL_KEY_EXCHANGE_ALGORITHMS,
}
}
/// Say if the given `KeyExchangeAlgorithm` is supported by this cipher suite.
///
/// TLS 1.3 cipher suites support all key exchange types, but TLS 1.2 suites
/// support only one.
pub(crate) fn usable_for_kx_algorithm(&self, _kxa: KeyExchangeAlgorithm) -> bool {
match self {
#[cfg(feature = "tls12")]
Self::Tls12(tls12) => tls12.kx == _kxa,
Self::Tls13(_) => true,
}
}
}
impl fmt::Debug for SupportedCipherSuite {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.suite().fmt(f)
}
}
/// Return true if `sigscheme` is usable by any of the given suites.
pub(crate) fn compatible_sigscheme_for_suites(
sigscheme: SignatureScheme,
common_suites: &[SupportedCipherSuite],
) -> bool {
let sigalg = sigscheme.algorithm();
common_suites
.iter()
.any(|&suite| suite.usable_for_signature_algorithm(sigalg))
}
/// Secrets for transmitting/receiving data over a TLS session.
///
/// After performing a handshake with rustls, these secrets can be extracted
/// to configure kTLS for a socket, and have the kernel take over encryption
/// and/or decryption.
pub struct ExtractedSecrets {
/// sequence number and secrets for the "tx" (transmit) direction
pub tx: (u64, ConnectionTrafficSecrets),
/// sequence number and secrets for the "rx" (receive) direction
pub rx: (u64, ConnectionTrafficSecrets),
}
/// [ExtractedSecrets] minus the sequence numbers
pub(crate) struct PartiallyExtractedSecrets {
/// secrets for the "tx" (transmit) direction
pub(crate) tx: ConnectionTrafficSecrets,
/// secrets for the "rx" (receive) direction
pub(crate) rx: ConnectionTrafficSecrets,
}
/// Secrets used to encrypt/decrypt data in a TLS session.
///
/// These can be used to configure kTLS for a socket in one direction.
/// The only other piece of information needed is the sequence number,
/// which is in [ExtractedSecrets].
#[non_exhaustive]
pub enum ConnectionTrafficSecrets {
/// Secrets for the AES_128_GCM AEAD algorithm
Aes128Gcm {
/// AEAD Key
key: AeadKey,
/// Initialization vector
iv: Iv,
},
/// Secrets for the AES_256_GCM AEAD algorithm
Aes256Gcm {
/// AEAD Key
key: AeadKey,
/// Initialization vector
iv: Iv,
},
/// Secrets for the CHACHA20_POLY1305 AEAD algorithm
Chacha20Poly1305 {
/// AEAD Key
key: AeadKey,
/// Initialization vector
iv: Iv,
},
}
#[cfg(test)]
#[macro_rules_attribute::apply(test_for_each_provider)]
mod tests {
use std::println;
use super::provider::tls13::*;
#[test]
fn test_scs_is_debug() {
println!("{:?}", super::provider::ALL_CIPHER_SUITES);
}
#[test]
fn test_can_resume_to() {
assert!(TLS13_AES_128_GCM_SHA256
.tls13()
.unwrap()
.can_resume_from(TLS13_CHACHA20_POLY1305_SHA256_INTERNAL)
.is_some());
assert!(TLS13_AES_256_GCM_SHA384
.tls13()
.unwrap()
.can_resume_from(TLS13_CHACHA20_POLY1305_SHA256_INTERNAL)
.is_none());
}
}