rand_distr/exponential.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
// Copyright 2018 Developers of the Rand project.
// Copyright 2013 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The exponential distribution.
use crate::utils::ziggurat;
use num_traits::Float;
use crate::{ziggurat_tables, Distribution};
use rand::Rng;
use core::fmt;
/// Samples floating-point numbers according to the exponential distribution,
/// with rate parameter `λ = 1`. This is equivalent to `Exp::new(1.0)` or
/// sampling with `-rng.gen::<f64>().ln()`, but faster.
///
/// See `Exp` for the general exponential distribution.
///
/// Implemented via the ZIGNOR variant[^1] of the Ziggurat method. The exact
/// description in the paper was adjusted to use tables for the exponential
/// distribution rather than normal.
///
/// [^1]: Jurgen A. Doornik (2005). [*An Improved Ziggurat Method to
/// Generate Normal Random Samples*](
/// https://www.doornik.com/research/ziggurat.pdf).
/// Nuffield College, Oxford
///
/// # Example
/// ```
/// use rand::prelude::*;
/// use rand_distr::Exp1;
///
/// let val: f64 = thread_rng().sample(Exp1);
/// println!("{}", val);
/// ```
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(serde::Serialize, serde::Deserialize))]
pub struct Exp1;
impl Distribution<f32> for Exp1 {
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f32 {
// TODO: use optimal 32-bit implementation
let x: f64 = self.sample(rng);
x as f32
}
}
// This could be done via `-rng.gen::<f64>().ln()` but that is slower.
impl Distribution<f64> for Exp1 {
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 {
#[inline]
fn pdf(x: f64) -> f64 {
(-x).exp()
}
#[inline]
fn zero_case<R: Rng + ?Sized>(rng: &mut R, _u: f64) -> f64 {
ziggurat_tables::ZIG_EXP_R - rng.gen::<f64>().ln()
}
ziggurat(
rng,
false,
&ziggurat_tables::ZIG_EXP_X,
&ziggurat_tables::ZIG_EXP_F,
pdf,
zero_case,
)
}
}
/// The exponential distribution `Exp(lambda)`.
///
/// This distribution has density function: `f(x) = lambda * exp(-lambda * x)`
/// for `x > 0`, when `lambda > 0`. For `lambda = 0`, all samples yield infinity.
///
/// Note that [`Exp1`](crate::Exp1) is an optimised implementation for `lambda = 1`.
///
/// # Example
///
/// ```
/// use rand_distr::{Exp, Distribution};
///
/// let exp = Exp::new(2.0).unwrap();
/// let v = exp.sample(&mut rand::thread_rng());
/// println!("{} is from a Exp(2) distribution", v);
/// ```
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(serde::Serialize, serde::Deserialize))]
pub struct Exp<F>
where F: Float, Exp1: Distribution<F>
{
/// `lambda` stored as `1/lambda`, since this is what we scale by.
lambda_inverse: F,
}
/// Error type returned from `Exp::new`.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Error {
/// `lambda < 0` or `nan`.
LambdaTooSmall,
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
Error::LambdaTooSmall => "lambda is negative or NaN in exponential distribution",
})
}
}
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
impl std::error::Error for Error {}
impl<F: Float> Exp<F>
where F: Float, Exp1: Distribution<F>
{
/// Construct a new `Exp` with the given shape parameter
/// `lambda`.
///
/// # Remarks
///
/// For custom types `N` implementing the [`Float`] trait,
/// the case `lambda = 0` is handled as follows: each sample corresponds
/// to a sample from an `Exp1` multiplied by `1 / 0`. Primitive types
/// yield infinity, since `1 / 0 = infinity`.
#[inline]
pub fn new(lambda: F) -> Result<Exp<F>, Error> {
if !(lambda >= F::zero()) {
return Err(Error::LambdaTooSmall);
}
Ok(Exp {
lambda_inverse: F::one() / lambda,
})
}
}
impl<F> Distribution<F> for Exp<F>
where F: Float, Exp1: Distribution<F>
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
rng.sample(Exp1) * self.lambda_inverse
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_exp() {
let exp = Exp::new(10.0).unwrap();
let mut rng = crate::test::rng(221);
for _ in 0..1000 {
assert!(exp.sample(&mut rng) >= 0.0);
}
}
#[test]
fn test_zero() {
let d = Exp::new(0.0).unwrap();
assert_eq!(d.sample(&mut crate::test::rng(21)), f64::infinity());
}
#[test]
#[should_panic]
fn test_exp_invalid_lambda_neg() {
Exp::new(-10.0).unwrap();
}
#[test]
#[should_panic]
fn test_exp_invalid_lambda_nan() {
Exp::new(f64::nan()).unwrap();
}
}