fastrand/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
//! A simple and fast random number generator.
//!
//! The implementation uses [Wyrand](https://github.com/wangyi-fudan/wyhash), a simple and fast
//! generator but **not** cryptographically secure.
//!
//! # Examples
//!
//! Flip a coin:
//!
//! ```
//! if fastrand::bool() {
//! println!("heads");
//! } else {
//! println!("tails");
//! }
//! ```
//!
//! Generate a random `i32`:
//!
//! ```
//! let num = fastrand::i32(..);
//! ```
//!
//! Choose a random element in an array:
//!
//! ```
//! let v = vec![1, 2, 3, 4, 5];
//! let i = fastrand::usize(..v.len());
//! let elem = v[i];
//! ```
//!
//! Sample values from an array with `O(n)` complexity (`n` is the length of array):
//!
//! ```
//! fastrand::choose_multiple(vec![1, 4, 5].iter(), 2);
//! fastrand::choose_multiple(0..20, 12);
//! ```
//!
//!
//! Shuffle an array:
//!
//! ```
//! let mut v = vec![1, 2, 3, 4, 5];
//! fastrand::shuffle(&mut v);
//! ```
//!
//! Generate a random [`Vec`] or [`String`]:
//!
//! ```
//! use std::iter::repeat_with;
//!
//! let v: Vec<i32> = repeat_with(|| fastrand::i32(..)).take(10).collect();
//! let s: String = repeat_with(fastrand::alphanumeric).take(10).collect();
//! ```
//!
//! To get reproducible results on every run, initialize the generator with a seed:
//!
//! ```
//! // Pick an arbitrary number as seed.
//! fastrand::seed(7);
//!
//! // Now this prints the same number on every run:
//! println!("{}", fastrand::u32(..));
//! ```
//!
//! To be more efficient, create a new [`Rng`] instance instead of using the thread-local
//! generator:
//!
//! ```
//! use std::iter::repeat_with;
//!
//! let mut rng = fastrand::Rng::new();
//! let mut bytes: Vec<u8> = repeat_with(|| rng.u8(..)).take(10_000).collect();
//! ```
//!
//! This crate aims to expose a core set of useful randomness primitives. For more niche algorithms,
//! consider using the [`fastrand-contrib`] crate alongside this one.
//!
//! # Features
//!
//! - `std` (enabled by default): Enables the `std` library. This is required for the global
//! generator and global entropy. Without this feature, [`Rng`] can only be instantiated using
//! the [`with_seed`](Rng::with_seed) method.
//! - `js`: Assumes that WebAssembly targets are being run in a JavaScript environment. See the
//! [WebAssembly Notes](#webassembly-notes) section for more information.
//!
//! # WebAssembly Notes
//!
//! For non-WASI WASM targets, there is additional sublety to consider when utilizing the global RNG.
//! By default, `std` targets will use entropy sources in the standard library to seed the global RNG.
//! However, these sources are not available by default on WASM targets outside of WASI.
//!
//! If the `js` feature is enabled, this crate will assume that it is running in a JavaScript
//! environment. At this point, the [`getrandom`] crate will be used in order to access the available
//! entropy sources and seed the global RNG. If the `js` feature is not enabled, the global RNG will
//! use a predefined seed.
//!
//! [`fastrand-contrib`]: https://crates.io/crates/fastrand-contrib
//! [`getrandom`]: https://crates.io/crates/getrandom
#![no_std]
#![cfg_attr(docsrs, feature(doc_cfg))]
#![forbid(unsafe_code)]
#![warn(missing_docs, missing_debug_implementations, rust_2018_idioms)]
#![doc(
html_favicon_url = "https://raw.githubusercontent.com/smol-rs/smol/master/assets/images/logo_fullsize_transparent.png"
)]
#![doc(
html_logo_url = "https://raw.githubusercontent.com/smol-rs/smol/master/assets/images/logo_fullsize_transparent.png"
)]
#[cfg(feature = "alloc")]
extern crate alloc;
#[cfg(feature = "std")]
extern crate std;
use core::convert::{TryFrom, TryInto};
use core::ops::{Bound, RangeBounds};
#[cfg(feature = "alloc")]
use alloc::vec::Vec;
#[cfg(feature = "std")]
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
mod global_rng;
#[cfg(feature = "std")]
pub use global_rng::*;
/// A random number generator.
#[derive(Debug, PartialEq, Eq)]
pub struct Rng(u64);
impl Clone for Rng {
/// Clones the generator by creating a new generator with the same seed.
fn clone(&self) -> Rng {
Rng::with_seed(self.0)
}
}
impl Rng {
/// Generates a random `u32`.
#[inline]
fn gen_u32(&mut self) -> u32 {
self.gen_u64() as u32
}
/// Generates a random `u64`.
#[inline]
fn gen_u64(&mut self) -> u64 {
// Constants for WyRand taken from: https://github.com/wangyi-fudan/wyhash/blob/master/wyhash.h#L151
// Updated for the final v4.2 implementation with improved constants for better entropy output.
const WY_CONST_0: u64 = 0x2d35_8dcc_aa6c_78a5;
const WY_CONST_1: u64 = 0x8bb8_4b93_962e_acc9;
let s = self.0.wrapping_add(WY_CONST_0);
self.0 = s;
let t = u128::from(s) * u128::from(s ^ WY_CONST_1);
(t as u64) ^ (t >> 64) as u64
}
/// Generates a random `u128`.
#[inline]
fn gen_u128(&mut self) -> u128 {
(u128::from(self.gen_u64()) << 64) | u128::from(self.gen_u64())
}
/// Generates a random `u32` in `0..n`.
#[inline]
fn gen_mod_u32(&mut self, n: u32) -> u32 {
// Adapted from: https://lemire.me/blog/2016/06/30/fast-random-shuffling/
let mut r = self.gen_u32();
let mut hi = mul_high_u32(r, n);
let mut lo = r.wrapping_mul(n);
if lo < n {
let t = n.wrapping_neg() % n;
while lo < t {
r = self.gen_u32();
hi = mul_high_u32(r, n);
lo = r.wrapping_mul(n);
}
}
hi
}
/// Generates a random `u64` in `0..n`.
#[inline]
fn gen_mod_u64(&mut self, n: u64) -> u64 {
// Adapted from: https://lemire.me/blog/2016/06/30/fast-random-shuffling/
let mut r = self.gen_u64();
let mut hi = mul_high_u64(r, n);
let mut lo = r.wrapping_mul(n);
if lo < n {
let t = n.wrapping_neg() % n;
while lo < t {
r = self.gen_u64();
hi = mul_high_u64(r, n);
lo = r.wrapping_mul(n);
}
}
hi
}
/// Generates a random `u128` in `0..n`.
#[inline]
fn gen_mod_u128(&mut self, n: u128) -> u128 {
// Adapted from: https://lemire.me/blog/2016/06/30/fast-random-shuffling/
let mut r = self.gen_u128();
let mut hi = mul_high_u128(r, n);
let mut lo = r.wrapping_mul(n);
if lo < n {
let t = n.wrapping_neg() % n;
while lo < t {
r = self.gen_u128();
hi = mul_high_u128(r, n);
lo = r.wrapping_mul(n);
}
}
hi
}
}
/// Computes `(a * b) >> 32`.
#[inline]
fn mul_high_u32(a: u32, b: u32) -> u32 {
(((a as u64) * (b as u64)) >> 32) as u32
}
/// Computes `(a * b) >> 64`.
#[inline]
fn mul_high_u64(a: u64, b: u64) -> u64 {
(((a as u128) * (b as u128)) >> 64) as u64
}
/// Computes `(a * b) >> 128`.
#[inline]
fn mul_high_u128(a: u128, b: u128) -> u128 {
// Adapted from: https://stackoverflow.com/a/28904636
let a_lo = a as u64 as u128;
let a_hi = (a >> 64) as u64 as u128;
let b_lo = b as u64 as u128;
let b_hi = (b >> 64) as u64 as u128;
let carry = (a_lo * b_lo) >> 64;
let carry = ((a_hi * b_lo) as u64 as u128 + (a_lo * b_hi) as u64 as u128 + carry) >> 64;
a_hi * b_hi + ((a_hi * b_lo) >> 64) + ((a_lo * b_hi) >> 64) + carry
}
macro_rules! rng_integer {
($t:tt, $unsigned_t:tt, $gen:tt, $mod:tt, $doc:tt) => {
#[doc = $doc]
///
/// Panics if the range is empty.
#[inline]
pub fn $t(&mut self, range: impl RangeBounds<$t>) -> $t {
let panic_empty_range = || {
panic!(
"empty range: {:?}..{:?}",
range.start_bound(),
range.end_bound()
)
};
let low = match range.start_bound() {
Bound::Unbounded => core::$t::MIN,
Bound::Included(&x) => x,
Bound::Excluded(&x) => x.checked_add(1).unwrap_or_else(panic_empty_range),
};
let high = match range.end_bound() {
Bound::Unbounded => core::$t::MAX,
Bound::Included(&x) => x,
Bound::Excluded(&x) => x.checked_sub(1).unwrap_or_else(panic_empty_range),
};
if low > high {
panic_empty_range();
}
if low == core::$t::MIN && high == core::$t::MAX {
self.$gen() as $t
} else {
let len = high.wrapping_sub(low).wrapping_add(1);
low.wrapping_add(self.$mod(len as $unsigned_t as _) as $t)
}
}
};
}
impl Rng {
/// Creates a new random number generator with the initial seed.
#[inline]
#[must_use = "this creates a new instance of `Rng`; if you want to initialize the thread-local generator, use `fastrand::seed()` instead"]
pub fn with_seed(seed: u64) -> Self {
Rng(seed)
}
/// Clones the generator by deterministically deriving a new generator based on the initial
/// seed.
///
/// This function can be used to create a new generator that is a "spinoff" of the old
/// generator. The new generator will not produce the same sequence of values as the
/// old generator.
///
/// # Example
///
/// ```
/// // Seed two generators equally, and clone both of them.
/// let mut base1 = fastrand::Rng::with_seed(0x4d595df4d0f33173);
/// base1.bool(); // Use the generator once.
///
/// let mut base2 = fastrand::Rng::with_seed(0x4d595df4d0f33173);
/// base2.bool(); // Use the generator once.
///
/// let mut rng1 = base1.fork();
/// let mut rng2 = base2.fork();
///
/// println!("rng1 returns {}", rng1.u32(..));
/// println!("rng2 returns {}", rng2.u32(..));
/// ```
#[inline]
#[must_use = "this creates a new instance of `Rng`"]
pub fn fork(&mut self) -> Self {
Rng::with_seed(self.gen_u64())
}
/// Generates a random `char` in ranges a-z and A-Z.
#[inline]
pub fn alphabetic(&mut self) -> char {
const CHARS: &[u8] = b"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
*self.choice(CHARS).unwrap() as char
}
/// Generates a random `char` in ranges a-z, A-Z and 0-9.
#[inline]
pub fn alphanumeric(&mut self) -> char {
const CHARS: &[u8] = b"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789";
*self.choice(CHARS).unwrap() as char
}
/// Generates a random `bool`.
#[inline]
pub fn bool(&mut self) -> bool {
self.u8(..) % 2 == 0
}
/// Generates a random digit in the given `base`.
///
/// Digits are represented by `char`s in ranges 0-9 and a-z.
///
/// Panics if the base is zero or greater than 36.
#[inline]
pub fn digit(&mut self, base: u32) -> char {
if base == 0 {
panic!("base cannot be zero");
}
if base > 36 {
panic!("base cannot be larger than 36");
}
let num = self.u8(..base as u8);
if num < 10 {
(b'0' + num) as char
} else {
(b'a' + num - 10) as char
}
}
/// Generates a random `f32` in range `0..1`.
pub fn f32(&mut self) -> f32 {
let b = 32;
let f = core::f32::MANTISSA_DIGITS - 1;
f32::from_bits((1 << (b - 2)) - (1 << f) + (self.u32(..) >> (b - f))) - 1.0
}
/// Generates a random `f64` in range `0..1`.
pub fn f64(&mut self) -> f64 {
let b = 64;
let f = core::f64::MANTISSA_DIGITS - 1;
f64::from_bits((1 << (b - 2)) - (1 << f) + (self.u64(..) >> (b - f))) - 1.0
}
/// Collects `amount` values at random from the iterator into a vector.
///
/// The length of the returned vector equals `amount` unless the iterator
/// contains insufficient elements, in which case it equals the number of
/// elements available.
///
/// Complexity is `O(n)` where `n` is the length of the iterator.
#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
pub fn choose_multiple<T: Iterator>(&mut self, mut source: T, amount: usize) -> Vec<T::Item> {
// Adapted from: https://docs.rs/rand/latest/rand/seq/trait.IteratorRandom.html#method.choose_multiple
let mut reservoir = Vec::with_capacity(amount);
reservoir.extend(source.by_ref().take(amount));
// Continue unless the iterator was exhausted
//
// note: this prevents iterators that "restart" from causing problems.
// If the iterator stops once, then so do we.
if reservoir.len() == amount {
for (i, elem) in source.enumerate() {
let end = i + 1 + amount;
let k = self.usize(0..end);
if let Some(slot) = reservoir.get_mut(k) {
*slot = elem;
}
}
} else {
// If less than one third of the `Vec` was used, reallocate
// so that the unused space is not wasted. There is a corner
// case where `amount` was much less than `self.len()`.
if reservoir.capacity() > 3 * reservoir.len() {
reservoir.shrink_to_fit();
}
}
reservoir
}
rng_integer!(
i8,
u8,
gen_u32,
gen_mod_u32,
"Generates a random `i8` in the given range."
);
rng_integer!(
i16,
u16,
gen_u32,
gen_mod_u32,
"Generates a random `i16` in the given range."
);
rng_integer!(
i32,
u32,
gen_u32,
gen_mod_u32,
"Generates a random `i32` in the given range."
);
rng_integer!(
i64,
u64,
gen_u64,
gen_mod_u64,
"Generates a random `i64` in the given range."
);
rng_integer!(
i128,
u128,
gen_u128,
gen_mod_u128,
"Generates a random `i128` in the given range."
);
#[cfg(target_pointer_width = "16")]
rng_integer!(
isize,
usize,
gen_u32,
gen_mod_u32,
"Generates a random `isize` in the given range."
);
#[cfg(target_pointer_width = "32")]
rng_integer!(
isize,
usize,
gen_u32,
gen_mod_u32,
"Generates a random `isize` in the given range."
);
#[cfg(target_pointer_width = "64")]
rng_integer!(
isize,
usize,
gen_u64,
gen_mod_u64,
"Generates a random `isize` in the given range."
);
/// Generates a random `char` in range a-z.
#[inline]
pub fn lowercase(&mut self) -> char {
const CHARS: &[u8] = b"abcdefghijklmnopqrstuvwxyz";
*self.choice(CHARS).unwrap() as char
}
/// Initializes this generator with the given seed.
#[inline]
pub fn seed(&mut self, seed: u64) {
self.0 = seed;
}
/// Gives back **current** seed that is being held by this generator.
#[inline]
pub fn get_seed(&self) -> u64 {
self.0
}
/// Choose an item from an iterator at random.
///
/// This function may have an unexpected result if the `len()` property of the
/// iterator does not match the actual number of items in the iterator. If
/// the iterator is empty, this returns `None`.
#[inline]
pub fn choice<I>(&mut self, iter: I) -> Option<I::Item>
where
I: IntoIterator,
I::IntoIter: ExactSizeIterator,
{
let mut iter = iter.into_iter();
// Get the item at a random index.
let len = iter.len();
if len == 0 {
return None;
}
let index = self.usize(0..len);
iter.nth(index)
}
/// Shuffles a slice randomly.
#[inline]
pub fn shuffle<T>(&mut self, slice: &mut [T]) {
for i in 1..slice.len() {
slice.swap(i, self.usize(..=i));
}
}
/// Fill a byte slice with random data.
#[inline]
pub fn fill(&mut self, slice: &mut [u8]) {
// We fill the slice by chunks of 8 bytes, or one block of
// WyRand output per new state.
let mut chunks = slice.chunks_exact_mut(core::mem::size_of::<u64>());
for chunk in chunks.by_ref() {
let n = self.gen_u64().to_ne_bytes();
// Safe because the chunks are always 8 bytes exactly.
chunk.copy_from_slice(&n);
}
let remainder = chunks.into_remainder();
// Any remainder will always be less than 8 bytes.
if !remainder.is_empty() {
// Generate one last block of 8 bytes of entropy
let n = self.gen_u64().to_ne_bytes();
// Use the remaining length to copy from block
remainder.copy_from_slice(&n[..remainder.len()]);
}
}
rng_integer!(
u8,
u8,
gen_u32,
gen_mod_u32,
"Generates a random `u8` in the given range."
);
rng_integer!(
u16,
u16,
gen_u32,
gen_mod_u32,
"Generates a random `u16` in the given range."
);
rng_integer!(
u32,
u32,
gen_u32,
gen_mod_u32,
"Generates a random `u32` in the given range."
);
rng_integer!(
u64,
u64,
gen_u64,
gen_mod_u64,
"Generates a random `u64` in the given range."
);
rng_integer!(
u128,
u128,
gen_u128,
gen_mod_u128,
"Generates a random `u128` in the given range."
);
#[cfg(target_pointer_width = "16")]
rng_integer!(
usize,
usize,
gen_u32,
gen_mod_u32,
"Generates a random `usize` in the given range."
);
#[cfg(target_pointer_width = "32")]
rng_integer!(
usize,
usize,
gen_u32,
gen_mod_u32,
"Generates a random `usize` in the given range."
);
#[cfg(target_pointer_width = "64")]
rng_integer!(
usize,
usize,
gen_u64,
gen_mod_u64,
"Generates a random `usize` in the given range."
);
/// Generates a random `char` in range A-Z.
#[inline]
pub fn uppercase(&mut self) -> char {
const CHARS: &[u8] = b"ABCDEFGHIJKLMNOPQRSTUVWXYZ";
*self.choice(CHARS).unwrap() as char
}
/// Generates a random `char` in the given range.
///
/// Panics if the range is empty.
#[inline]
pub fn char(&mut self, range: impl RangeBounds<char>) -> char {
let panic_empty_range = || {
panic!(
"empty range: {:?}..{:?}",
range.start_bound(),
range.end_bound()
)
};
let surrogate_start = 0xd800u32;
let surrogate_len = 0x800u32;
let low = match range.start_bound() {
Bound::Unbounded => 0u8 as char,
Bound::Included(&x) => x,
Bound::Excluded(&x) => {
let scalar = if x as u32 == surrogate_start - 1 {
surrogate_start + surrogate_len
} else {
x as u32 + 1
};
char::try_from(scalar).unwrap_or_else(|_| panic_empty_range())
}
};
let high = match range.end_bound() {
Bound::Unbounded => core::char::MAX,
Bound::Included(&x) => x,
Bound::Excluded(&x) => {
let scalar = if x as u32 == surrogate_start + surrogate_len {
surrogate_start - 1
} else {
(x as u32).wrapping_sub(1)
};
char::try_from(scalar).unwrap_or_else(|_| panic_empty_range())
}
};
if low > high {
panic_empty_range();
}
let gap = if (low as u32) < surrogate_start && (high as u32) >= surrogate_start {
surrogate_len
} else {
0
};
let range = high as u32 - low as u32 - gap;
let mut val = self.u32(0..=range) + low as u32;
if val >= surrogate_start {
val += gap;
}
val.try_into().unwrap()
}
}