1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
//! Database memory map resizing algorithms.
//!
//! This modules contains [`ResizeAlgorithm`] which determines how the
//! [`ConcreteEnv`](crate::ConcreteEnv) resizes its memory map when needing more space.
//! This value is in [`Config`](crate::config::Config) and can be selected at runtime.
//!
//! Although, it is only used by `ConcreteEnv` if [`Env::MANUAL_RESIZE`](crate::env::Env::MANUAL_RESIZE) is `true`.
//!
//! The algorithms are available as free functions in this module as well.
//!
//! # Page size
//! All free functions in this module will
//! return a multiple of the OS page size ([`PAGE_SIZE`]),
//! [LMDB will error](http://www.lmdb.tech/doc/group__mdb.html#gaa2506ec8dab3d969b0e609cd82e619e5)
//! if this is not the case.
//!
//! # Invariants
//! All returned [`NonZeroUsize`] values of the free functions in this module
//! (including [`ResizeAlgorithm::resize`]) uphold the following invariants:
//! 1. It will always be `>=` the input `current_size_bytes`
//! 2. It will always be a multiple of [`PAGE_SIZE`]

//---------------------------------------------------------------------------------------------------- Import
use std::{num::NonZeroUsize, sync::LazyLock};

//---------------------------------------------------------------------------------------------------- ResizeAlgorithm
/// The function/algorithm used by the
/// database when resizing the memory map.
///
// # SOMEDAY
// We could test around with different algorithms.
// Calling `heed::Env::resize` is surprisingly fast,
// around `0.0000082s` on my machine. We could probably
// get away with smaller and more frequent resizes.
// **With the caveat being we are taking a `WriteGuard` to a `RwLock`.**
#[derive(Copy, Clone, Debug, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub enum ResizeAlgorithm {
    /// Uses [`monero`].
    Monero,

    /// Uses [`fixed_bytes`].
    FixedBytes(NonZeroUsize),

    /// Uses [`percent`].
    Percent(f32),
}

impl ResizeAlgorithm {
    /// Returns [`Self::Monero`].
    ///
    /// ```rust
    /// # use cuprate_database::resize::*;
    /// assert!(matches!(ResizeAlgorithm::new(), ResizeAlgorithm::Monero));
    /// ```
    #[inline]
    pub const fn new() -> Self {
        Self::Monero
    }

    /// Maps the `self` variant to the free functions in [`crate::resize`].
    ///
    /// This function returns the _new_ memory map size in bytes.
    #[inline]
    pub fn resize(&self, current_size_bytes: usize) -> NonZeroUsize {
        match self {
            Self::Monero => monero(current_size_bytes),
            Self::FixedBytes(add_bytes) => fixed_bytes(current_size_bytes, add_bytes.get()),
            Self::Percent(f) => percent(current_size_bytes, *f),
        }
    }
}

impl Default for ResizeAlgorithm {
    /// Calls [`Self::new`].
    ///
    /// ```rust
    /// # use cuprate_database::resize::*;
    /// assert_eq!(ResizeAlgorithm::new(), ResizeAlgorithm::default());
    /// ```
    #[inline]
    fn default() -> Self {
        Self::new()
    }
}

//---------------------------------------------------------------------------------------------------- Free functions
/// This retrieves the system’s memory page size.
///
/// It is just [`page_size::get`](https://docs.rs/page_size) internally.
///
/// # Panics
/// Accessing this [`LazyLock`] will panic if the OS returns of page size of `0` (impossible?).
pub static PAGE_SIZE: LazyLock<NonZeroUsize> =
    LazyLock::new(|| NonZeroUsize::new(page_size::get()).expect("page_size::get() returned 0"));

/// Memory map resize closely matching `monerod`.
///
/// # Method
/// This function mostly matches `monerod`'s current resize implementation[^1],
/// and will increase `current_size_bytes` by `1 << 30`[^2] exactly then
/// rounded to the nearest multiple of the OS page size.
///
/// [^1]: <https://github.com/monero-project/monero/blob/059028a30a8ae9752338a7897329fe8012a310d5/src/blockchain_db/lmdb/db_lmdb.cpp#L549>
///
/// [^2]: `1_073_745_920`
///
/// ```rust
/// # use cuprate_database::resize::*;
/// // The value this function will increment by
/// // (assuming page multiple of 4096).
/// const N: usize = 1_073_741_824;
///
/// // 0 returns the minimum value.
/// assert_eq!(monero(0).get(), N);
///
/// // Rounds up to nearest OS page size.
/// assert_eq!(monero(1).get(), N + PAGE_SIZE.get());
/// ```
///
/// # Panics
/// This function will panic if adding onto `current_size_bytes` overflows [`usize::MAX`].
///
/// ```rust,should_panic
/// # use cuprate_database::resize::*;
/// // Ridiculous large numbers panic.
/// monero(usize::MAX);
/// ```
pub fn monero(current_size_bytes: usize) -> NonZeroUsize {
    /// The exact expression used by `monerod`
    /// when calculating how many bytes to add.
    ///
    /// The nominal value is `1_073_741_824`.
    /// Not actually 1 GB but close enough I guess.
    ///
    /// <https://github.com/monero-project/monero/blob/059028a30a8ae9752338a7897329fe8012a310d5/src/blockchain_db/lmdb/db_lmdb.cpp#L553>
    const ADD_SIZE: usize = 1_usize << 30;

    let page_size = PAGE_SIZE.get();
    let new_size_bytes = current_size_bytes + ADD_SIZE;

    // Round up the new size to the
    // nearest multiple of the OS page size.
    let remainder = new_size_bytes % page_size;

    // INVARIANT: minimum is always at least `ADD_SIZE`.
    NonZeroUsize::new(if remainder == 0 {
        new_size_bytes
    } else {
        (new_size_bytes + page_size) - remainder
    })
    .unwrap()
}

/// Memory map resize by a fixed amount of bytes.
///
/// # Method
/// This function will `current_size_bytes + add_bytes`
/// and then round up to nearest OS page size.
///
/// ```rust
/// # use cuprate_database::resize::*;
/// let page_size: usize = PAGE_SIZE.get();
///
/// // Anything below the page size will round up to the page size.
/// for i in 0..=page_size {
///     assert_eq!(fixed_bytes(0, i).get(), page_size);
/// }
///
/// // (page_size + 1) will round up to (page_size * 2).
/// assert_eq!(fixed_bytes(page_size, 1).get(), page_size * 2);
///
/// // (page_size + page_size) doesn't require any rounding.
/// assert_eq!(fixed_bytes(page_size, page_size).get(), page_size * 2);
/// ```
///
/// # Panics
/// This function will panic if adding onto `current_size_bytes` overflows [`usize::MAX`].
///
/// ```rust,should_panic
/// # use cuprate_database::resize::*;
/// // Ridiculous large numbers panic.
/// fixed_bytes(1, usize::MAX);
/// ```
pub fn fixed_bytes(current_size_bytes: usize, add_bytes: usize) -> NonZeroUsize {
    let page_size = *PAGE_SIZE;
    let new_size_bytes = current_size_bytes + add_bytes;

    // Guard against < page_size.
    if new_size_bytes <= page_size.get() {
        return page_size;
    }

    // Round up the new size to the
    // nearest multiple of the OS page size.
    let remainder = new_size_bytes % page_size;

    // INVARIANT: we guarded against < page_size above.
    NonZeroUsize::new(if remainder == 0 {
        new_size_bytes
    } else {
        (new_size_bytes + page_size.get()) - remainder
    })
    .unwrap()
}

/// Memory map resize by a percentage.
///
/// # Method
/// This function will multiply `current_size_bytes` by `percent`.
///
/// Any input `<= 1.0` or non-normal float ([`f32::NAN`], [`f32::INFINITY`])
/// will make the returning `NonZeroUsize` the same as `current_size_bytes`
/// (rounded up to the OS page size).
///
/// ```rust
/// # use cuprate_database::resize::*;
/// let page_size: usize = PAGE_SIZE.get();
///
/// // Anything below the page size will round up to the page size.
/// for i in 0..=page_size {
///     assert_eq!(percent(i, 1.0).get(), page_size);
/// }
///
/// // Same for 2 page sizes.
/// for i in (page_size + 1)..=(page_size * 2) {
///     assert_eq!(percent(i, 1.0).get(), page_size * 2);
/// }
///
/// // Weird floats do nothing.
/// assert_eq!(percent(page_size, f32::NAN).get(), page_size);
/// assert_eq!(percent(page_size, f32::INFINITY).get(), page_size);
/// assert_eq!(percent(page_size, f32::NEG_INFINITY).get(), page_size);
/// assert_eq!(percent(page_size, -1.0).get(), page_size);
/// assert_eq!(percent(page_size, 0.999).get(), page_size);
/// ```
///
/// # Panics
/// This function will panic if `current_size_bytes * percent`
/// is closer to [`usize::MAX`] than the OS page size.
///
/// ```rust,should_panic
/// # use cuprate_database::resize::*;
/// // Ridiculous large numbers panic.
/// percent(usize::MAX, 1.001);
/// ```
pub fn percent(current_size_bytes: usize, percent: f32) -> NonZeroUsize {
    // Guard against bad floats.
    use std::num::FpCategory;
    let percent = match percent.classify() {
        FpCategory::Normal => {
            if percent <= 1.0 {
                1.0
            } else {
                percent
            }
        }
        _ => 1.0,
    };

    let page_size = *PAGE_SIZE;

    // INVARIANT: Allow `f32` <-> `usize` casting, we handle all cases.
    #[expect(
        clippy::cast_possible_truncation,
        clippy::cast_sign_loss,
        clippy::cast_precision_loss
    )]
    let new_size_bytes = ((current_size_bytes as f32) * percent) as usize;

    // Panic if rounding up to the nearest page size would overflow.
    let new_size_bytes = if new_size_bytes > (usize::MAX - page_size.get()) {
        panic!("new_size_bytes is percent() near usize::MAX");
    } else {
        new_size_bytes
    };

    // Guard against < page_size.
    if new_size_bytes <= page_size.get() {
        return page_size;
    }

    // Round up the new size to the
    // nearest multiple of the OS page size.
    let remainder = new_size_bytes % page_size;

    // INVARIANT: we guarded against < page_size above.
    NonZeroUsize::new(if remainder == 0 {
        new_size_bytes
    } else {
        (new_size_bytes + page_size.get()) - remainder
    })
    .unwrap()
}

//---------------------------------------------------------------------------------------------------- Tests
#[cfg(test)]
mod test {
    // use super::*;
}