bitvec/ptr/single.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
#![doc = include_str!("../../doc/ptr/single.md")]
use core::{
any,
cmp,
convert::TryFrom,
fmt::{
self,
Debug,
Display,
Formatter,
Pointer,
},
hash::{
Hash,
Hasher,
},
marker::PhantomData,
ptr,
};
use tap::{
Pipe,
TryConv,
};
use wyz::{
comu::{
Address,
Const,
Frozen,
Mut,
Mutability,
NullPtrError,
},
fmt::FmtForward,
};
use super::{
check_alignment,
AddressExt,
BitPtrRange,
BitRef,
BitSpan,
BitSpanError,
MisalignError,
};
use crate::{
access::BitAccess,
devel as dvl,
index::BitIdx,
mem,
order::{
BitOrder,
Lsb0,
},
store::BitStore,
};
#[repr(C, packed)]
#[doc = include_str!("../../doc/ptr/BitPtr.md")]
pub struct BitPtr<M = Const, T = usize, O = Lsb0>
where
M: Mutability,
T: BitStore,
O: BitOrder,
{
/// Memory addresses must be well-aligned and non-null.
///
/// This is not actually a requirement of `BitPtr`, but it is a requirement
/// of `BitSpan`, and it is extended across the entire crate for
/// consistency.
ptr: Address<M, T>,
/// The index of the referent bit within `*addr`.
bit: BitIdx<T::Mem>,
/// The ordering used to select the bit at `head` in `*addr`.
_or: PhantomData<O>,
}
impl<M, T, O> BitPtr<M, T, O>
where
M: Mutability,
T: BitStore,
O: BitOrder,
{
/// The canonical dangling pointer. This selects the starting bit of the
/// canonical dangling pointer for `T`.
pub const DANGLING: Self = Self {
ptr: Address::DANGLING,
bit: BitIdx::MIN,
_or: PhantomData,
};
/// Loads the address field, sidestepping any alignment problems.
///
/// This is the only safe way to access `(&self).ptr`. Do not perform field
/// access on `.ptr` through a reference except through this method.
#[inline]
fn get_addr(&self) -> Address<M, T> {
unsafe { ptr::addr_of!(self.ptr).read_unaligned() }
}
/// Tries to construct a `BitPtr` from a memory location and a bit index.
///
/// ## Parameters
///
/// - `ptr`: The address of a memory element. `Address` wraps raw pointers
/// or references, and enforces that they are not null. `BitPtr`
/// additionally requires that the address be well-aligned to its type;
/// misaligned addresses cause this to return an error.
/// - `bit`: The index of the selected bit within `*ptr`.
///
/// ## Returns
///
/// This returns an error if `ptr` is not aligned to `T`; otherwise, it
/// returns a new bit-pointer structure to the given element and bit.
///
/// You should typically prefer to use constructors that take directly from
/// a memory reference or pointer, such as the `TryFrom<*T>`
/// implementations, the `From<&/mut T>` implementations, or the
/// [`::from_ref()`], [`::from_mut()`], [`::from_slice()`], or
/// [`::from_slice_mut()`] functions.
///
/// [`::from_mut()`]: Self::from_mut
/// [`::from_ref()`]: Self::from_ref
/// [`::from_slice()`]: Self::from_slice
/// [`::from_slice_mut()`]: Self::from_slice_mut
#[inline]
pub fn new(
ptr: Address<M, T>,
bit: BitIdx<T::Mem>,
) -> Result<Self, MisalignError<T>> {
Ok(Self {
ptr: check_alignment(ptr)?,
bit,
..Self::DANGLING
})
}
/// Constructs a `BitPtr` from an address and head index, without checking
/// the address for validity.
///
/// ## Parameters
///
/// - `addr`: The memory address to use in the bit-pointer. See the Safety
/// section.
/// - `head`: The index of the bit in `*addr` that this bit-pointer selects.
///
/// ## Returns
///
/// A new bit-pointer composed of the parameters. No validity checking is
/// performed.
///
/// ## Safety
///
/// The `Address` type imposes a non-null requirement. `BitPtr` additionally
/// requires that `addr` is well-aligned for `T`, and presumes that the
/// caller has ensured this with [`bv_ptr::check_alignment`][0]. If this is
/// not the case, then the program is incorrect, and subsequent behavior is
/// not specified.
///
/// [0]: crate::ptr::check_alignment.
#[inline]
pub unsafe fn new_unchecked(
ptr: Address<M, T>,
bit: BitIdx<T::Mem>,
) -> Self {
if cfg!(debug_assertions) {
Self::new(ptr, bit).unwrap()
}
else {
Self {
ptr,
bit,
..Self::DANGLING
}
}
}
/// Gets the address of the base storage element.
#[inline]
pub fn address(self) -> Address<M, T> {
self.get_addr()
}
/// Gets the `BitIdx` that selects the bit within the memory element.
#[inline]
pub fn bit(self) -> BitIdx<T::Mem> {
self.bit
}
/// Decomposes a bit-pointer into its element address and bit index.
///
/// ## Parameters
///
/// - `self`
///
/// ## Returns
///
/// - `.0`: The memory address in which the referent bit is located.
/// - `.1`: The index of the referent bit in `*.0` according to the `O` type
/// parameter.
#[inline]
pub fn raw_parts(self) -> (Address<M, T>, BitIdx<T::Mem>) {
(self.address(), self.bit())
}
/// Converts a bit-pointer into a span descriptor by attaching a length
/// counter (in bits).
///
/// ## Parameters
///
/// - `self`: The base address of the produced span.
/// - `bits`: The length, in bits, of the span.
///
/// ## Returns
///
/// A span descriptor beginning at `self` and ending (exclusive) at `self +
/// bits`. This fails if it is unable to encode the requested span into a
/// descriptor.
pub(crate) fn span(
self,
bits: usize,
) -> Result<BitSpan<M, T, O>, BitSpanError<T>> {
BitSpan::new(self.ptr, self.bit, bits)
}
/// Converts a bit-pointer into a span descriptor, without performing
/// encoding validity checks.
///
/// ## Parameters
///
/// - `self`: The base address of the produced span.
/// - `bits`: The length, in bits, of the span.
///
/// ## Returns
///
/// An encoded span descriptor of `self` and `bits`. Note that no validity
/// checks are performed!
///
/// ## Safety
///
/// The caller must ensure that the rules of `BitSpan::new` are not
/// violated. Typically this method should only be used on parameters that
/// have already passed through `BitSpan::new` and are known to be good.
pub(crate) unsafe fn span_unchecked(self, bits: usize) -> BitSpan<M, T, O> {
BitSpan::new_unchecked(self.get_addr(), self.bit, bits)
}
/// Produces a bit-pointer range beginning at `self` (inclusive) and ending
/// at `self + count` (exclusive).
///
/// ## Safety
///
/// `self + count` must be within the same provenance region as `self`. The
/// first bit past the end of an allocation is included in provenance
/// regions, though it is not dereferenceable and will not be dereferenced.
///
/// It is unsound to *even construct* a pointer that departs the provenance
/// region, even if that pointer is never dereferenced!
pub(crate) unsafe fn range(self, count: usize) -> BitPtrRange<M, T, O> {
(self .. self.add(count)).into()
}
/// Removes write permissions from a bit-pointer.
#[inline]
pub fn to_const(self) -> BitPtr<Const, T, O> {
let Self {
ptr: addr,
bit: head,
..
} = self;
BitPtr {
ptr: addr.immut(),
bit: head,
..BitPtr::DANGLING
}
}
/// Adds write permissions to a bit-pointer.
///
/// ## Safety
///
/// This pointer must have been derived from a `*mut` pointer.
#[inline]
pub unsafe fn to_mut(self) -> BitPtr<Mut, T, O> {
let Self {
ptr: addr,
bit: head,
..
} = self;
BitPtr {
ptr: addr.assert_mut(),
bit: head,
..BitPtr::DANGLING
}
}
/// Freezes a bit-pointer, forbidding direct mutation.
///
/// This is used as a necessary prerequisite to all mutation of memory.
/// `BitPtr` uses an implementation scoped to `Frozen<_>` to perform
/// alias-aware writes; see below.
pub(crate) fn freeze(self) -> BitPtr<Frozen<M>, T, O> {
let Self {
ptr: addr,
bit: head,
..
} = self;
BitPtr {
ptr: addr.freeze(),
bit: head,
..BitPtr::DANGLING
}
}
}
impl<T, O> BitPtr<Const, T, O>
where
T: BitStore,
O: BitOrder,
{
/// Constructs a `BitPtr` to the zeroth bit in a single element.
#[inline]
pub fn from_ref(elem: &T) -> Self {
unsafe { Self::new_unchecked(elem.into(), BitIdx::MIN) }
}
/// Constructs a `BitPtr` to the zeroth bit in the zeroth element of a
/// slice.
///
/// This method is distinct from `Self::from_ref(&elem[0])`, because it
/// ensures that the returned bit-pointer has provenance over the entire
/// slice. Indexing within a slice narrows the provenance range, and makes
/// departure from the subslice, *even within the original slice*, illegal.
#[inline]
pub fn from_slice(slice: &[T]) -> Self {
unsafe {
Self::new_unchecked(slice.as_ptr().into_address(), BitIdx::MIN)
}
}
/// Gets a raw pointer to the memory element containing the selected bit.
#[inline]
#[cfg(not(tarpaulin_include))]
pub fn pointer(&self) -> *const T {
self.get_addr().to_const()
}
}
impl<T, O> BitPtr<Mut, T, O>
where
T: BitStore,
O: BitOrder,
{
/// Constructs a mutable `BitPtr` to the zeroth bit in a single element.
#[inline]
pub fn from_mut(elem: &mut T) -> Self {
unsafe { Self::new_unchecked(elem.into(), BitIdx::MIN) }
}
/// Constructs a `BitPtr` to the zeroth bit in the zeroth element of a
/// mutable slice.
///
/// This method is distinct from `Self::from_mut(&mut elem[0])`, because it
/// ensures that the returned bit-pointer has provenance over the entire
/// slice. Indexing within a slice narrows the provenance range, and makes
/// departure from the subslice, *even within the original slice*, illegal.
#[inline]
pub fn from_mut_slice(slice: &mut [T]) -> Self {
unsafe {
Self::new_unchecked(slice.as_mut_ptr().into_address(), BitIdx::MIN)
}
}
/// Constructs a mutable `BitPtr` to the zeroth bit in the zeroth element of
/// a slice.
///
/// This method is distinct from `Self::from_mut(&mut elem[0])`, because it
/// ensures that the returned bit-pointer has provenance over the entire
/// slice. Indexing within a slice narrows the provenance range, and makes
/// departure from the subslice, *even within the original slice*, illegal.
#[inline]
pub fn from_slice_mut(slice: &mut [T]) -> Self {
unsafe {
Self::new_unchecked(slice.as_mut_ptr().into_address(), BitIdx::MIN)
}
}
/// Gets a raw pointer to the memory location containing the selected bit.
#[inline]
#[cfg(not(tarpaulin_include))]
pub fn pointer(&self) -> *mut T {
self.get_addr().to_mut()
}
}
/// Port of the `*bool` inherent API.
impl<M, T, O> BitPtr<M, T, O>
where
M: Mutability,
T: BitStore,
O: BitOrder,
{
/// Tests if a bit-pointer is the null value.
///
/// This is always false, as a `BitPtr` is a `NonNull` internally. Use
/// `Option<BitPtr>` to express the potential for a null pointer.
///
/// ## Original
///
/// [`pointer::is_null`](https://doc.rust-lang.org/std/primitive.pointer.html#method.is_null)
#[inline]
#[deprecated = "`BitPtr` is never null"]
pub fn is_null(self) -> bool {
false
}
/// Casts to a `BitPtr` with a different storage parameter.
///
/// This is not free! In order to maintain value integrity, it encodes a
/// `BitSpan` encoded descriptor with its value, casts that, then decodes
/// into a `BitPtr` of the target type. If `T` and `U` have different
/// `::Mem` associated types, then this may change the selected bit in
/// memory. This is an unavoidable cost of the addressing and encoding
/// schemes.
///
/// ## Original
///
/// [`pointer::cast`](https://doc.rust-lang.org/std/primitive.pointer.html#method.cast)
#[inline]
pub fn cast<U>(self) -> BitPtr<M, U, O>
where U: BitStore {
let (addr, head, _) =
unsafe { self.span_unchecked(1) }.cast::<U>().raw_parts();
unsafe { BitPtr::new_unchecked(addr, head) }
}
/// Decomposes a bit-pointer into its address and head-index components.
///
/// ## Original
///
/// [`pointer::to_raw_parts`](https://doc.rust-lang.org/std/primitive.pointer.html#method.to_raw_parts)
///
/// ## API Differences
///
/// The original method is unstable as of 1.54.0; however, because `BitPtr`
/// already has a similar API, the name is optimistically stabilized here.
/// Prefer [`.raw_parts()`] until the original inherent stabilizes.
///
/// [`.raw_parts()`]: Self::raw_parts
#[inline]
#[cfg(not(tarpaulin_include))]
pub fn to_raw_parts(self) -> (Address<M, T>, BitIdx<T::Mem>) {
self.raw_parts()
}
/// Produces a proxy reference to the referent bit.
///
/// Because `BitPtr` guarantees that it is non-null and well-aligned, this
/// never returns `None`. However, this is still unsafe to call on any
/// bit-pointers created from conjured values rather than known references.
///
/// ## Original
///
/// [`pointer::as_ref`](https://doc.rust-lang.org/std/primitive.pointer.html#method.as_ref)
///
/// ## API Differences
///
/// This produces a proxy type rather than a true reference. The proxy
/// implements `Deref<Target = bool>`, and can be converted to `&bool` with
/// a reborrow `&*`.
///
/// ## Safety
///
/// Since `BitPtr` does not permit null or misaligned pointers, this method
/// will always dereference the pointer in order to create the proxy. As
/// such, you must ensure the following conditions are met:
///
/// - the pointer must be dereferenceable as defined in the standard library
/// documentation
/// - the pointer must point to an initialized instance of `T`
/// - you must ensure that no other pointer will race to modify the referent
/// location while this call is reading from memory to produce the proxy
///
/// ## Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let data = 1u8;
/// let ptr = BitPtr::<_, _, Lsb0>::from_ref(&data);
/// let val = unsafe { ptr.as_ref() }.unwrap();
/// assert!(*val);
/// ```
#[inline]
pub unsafe fn as_ref<'a>(self) -> Option<BitRef<'a, Const, T, O>> {
Some(BitRef::from_bitptr(self.to_const()))
}
/// Creates a new bit-pointer at a specified offset from the original.
///
/// `count` is in units of bits.
///
/// ## Original
///
/// [`pointer::offset`](https://doc.rust-lang.org/std/primitive.pointer.html#method.offset)
///
/// ## Safety
///
/// `BitPtr` is implemented with Rust raw pointers internally, and is
/// subject to all of Rust’s rules about provenance and permission tracking.
/// You must abide by the safety rules established in the original method,
/// to which this internally delegates.
///
/// Additionally, `bitvec` imposes its own rules: while Rust cannot observe
/// provenance beyond an element or byte level, `bitvec` demands that
/// `&mut BitSlice` have exclusive view over all bits it observes. You must
/// not produce a bit-pointer that departs a `BitSlice` region and intrudes
/// on any `&mut BitSlice`’s handle, and you must not produce a
/// write-capable bit-pointer that intrudes on a `&BitSlice` handle that
/// expects its contents to be immutable.
///
/// Note that it is illegal to *construct* a bit-pointer that invalidates
/// any of these rules. If you wish to defer safety-checking to the point of
/// dereferencing, and allow the temporary construction *but not*
/// *dereference* of illegal `BitPtr`s, use [`.wrapping_offset()`] instead.
///
/// ## Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let data = 5u8;
/// let ptr = BitPtr::<_, _, Lsb0>::from_ref(&data);
/// unsafe {
/// assert!(ptr.read());
/// assert!(!ptr.offset(1).read());
/// assert!(ptr.offset(2).read());
/// }
/// ```
///
/// [`.wrapping_offset()`]: Self::wrapping_offset
#[inline]
#[must_use = "returns a new bit-pointer rather than modifying its argument"]
pub unsafe fn offset(self, count: isize) -> Self {
let (elts, head) = self.bit.offset(count);
Self::new_unchecked(self.ptr.offset(elts), head)
}
/// Creates a new bit-pointer at a specified offset from the original.
///
/// `count` is in units of bits.
///
/// ## Original
///
/// [`pointer::wrapping_offset`](https://doc.rust-lang.org/std/primitive.pointer.html#method.wrapping_offset)
///
/// ## API Differences
///
/// `bitvec` makes it explicitly illegal to wrap a pointer around the high
/// end of the address space, because it is incapable of representing a null
/// pointer.
///
/// However, `<*T>::wrapping_offset` has additional properties as a result
/// of its tolerance for wrapping the address space: it tolerates departing
/// a provenance region, and is not unsafe to use to *create* a bit-pointer
/// that is outside the bounds of its original provenance.
///
/// ## Safety
///
/// This function is safe to use because the bit-pointers it creates defer
/// their provenance checks until the point of dereference. As such, you
/// can safely use this to perform arbitrary pointer arithmetic that Rust
/// considers illegal in ordinary arithmetic, as long as you do not
/// dereference the bit-pointer until it has been brought in bounds of the
/// originating provenance region.
///
/// This means that, to the Rust rule engine,
/// `let z = x.wrapping_add(y as usize).wrapping_sub(x as usize);` is not
/// equivalent to `y`, but `z` is safe to construct, and
/// `z.wrapping_add(x as usize).wrapping_sub(y as usize)` produces a
/// bit-pointer that *is* equivalent to `x`.
///
/// See the documentation of the original method for more details about
/// provenance regions, and the distinctions that the optimizer makes about
/// them.
///
/// ## Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let data = 0u32;
/// let mut ptr = BitPtr::<_, _, Lsb0>::from_ref(&data);
/// let end = ptr.wrapping_offset(32);
/// while ptr < end {
/// # #[cfg(feature = "std")] {
/// println!("{}", unsafe { ptr.read() });
/// # }
/// ptr = ptr.wrapping_offset(3);
/// }
/// ```
#[inline]
#[must_use = "returns a new bit-pointer rather than modifying its argument"]
pub fn wrapping_offset(self, count: isize) -> Self {
let (elts, head) = self.bit.offset(count);
unsafe { Self::new_unchecked(self.ptr.wrapping_offset(elts), head) }
}
/// Calculates the distance (in bits) between two bit-pointers.
///
/// This method is the inverse of [`.offset()`].
///
/// ## Original
///
/// [`pointer::offset_from`](https://doc.rust-lang.org/std/primitive.pointer.html#method.offset_from)
///
/// ## API Differences
///
/// The base pointer may have a different `BitStore` type parameter, as long
/// as they share an underlying memory type. This is necessary in order to
/// accommodate aliasing markers introduced between when an origin pointer
/// was taken and when `self` compared against it.
///
/// ## Safety
///
/// Both `self` and `origin` **must** be drawn from the same provenance
/// region. This means that they must be created from the same Rust
/// allocation, whether with `let` or the allocator API, and must be in the
/// (inclusive) range `base ..= base + len`. The first bit past the end of
/// a region can be addressed, just not dereferenced.
///
/// See the original `<*T>::offset_from` for more details on region safety.
///
/// ## Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let data = 0u32;
/// let base = BitPtr::<_, _, Lsb0>::from_ref(&data);
/// let low = unsafe { base.add(10) };
/// let high = unsafe { low.add(15) };
/// unsafe {
/// assert_eq!(high.offset_from(low), 15);
/// assert_eq!(low.offset_from(high), -15);
/// assert_eq!(low.offset(15), high);
/// assert_eq!(high.offset(-15), low);
/// }
/// ```
///
/// While this method is safe to *construct* bit-pointers that depart a
/// provenance region, it remains illegal to *dereference* those pointers!
///
/// This usage is incorrect, and a program that contains it is not
/// well-formed.
///
/// ```rust,no_run
/// use bitvec::prelude::*;
///
/// let a = 0u8;
/// let b = !0u8;
///
/// let a_ptr = BitPtr::<_, _, Lsb0>::from_ref(&a);
/// let b_ptr = BitPtr::<_, _, Lsb0>::from_ref(&b);
/// let diff = (b_ptr.pointer() as isize)
/// .wrapping_sub(a_ptr.pointer() as isize)
/// // Remember: raw pointers are byte-stepped,
/// // but bit-pointers are bit-stepped.
/// .wrapping_mul(8);
/// // This pointer to `b` has `a`’s provenance:
/// let b_ptr_2 = a_ptr.wrapping_offset(diff);
///
/// // They are *arithmetically* equal:
/// assert_eq!(b_ptr, b_ptr_2);
/// // But it is still undefined behavior to cross provenances!
/// assert_eq!(0, unsafe { b_ptr_2.offset_from(b_ptr) });
/// ```
///
/// [`.offset()`]: Self::offset
#[inline]
pub unsafe fn offset_from<U>(self, origin: BitPtr<M, U, O>) -> isize
where U: BitStore<Mem = T::Mem> {
self.get_addr()
.cast::<T::Mem>()
.offset_from(origin.get_addr().cast::<T::Mem>())
.wrapping_mul(mem::bits_of::<T::Mem>() as isize)
.wrapping_add(self.bit.into_inner() as isize)
.wrapping_sub(origin.bit.into_inner() as isize)
}
/// Adjusts a bit-pointer upwards in memory. This is equivalent to
/// `.offset(count as isize)`.
///
/// `count` is in units of bits.
///
/// ## Original
///
/// [`pointer::add`](https://doc.rust-lang.org/std/primitive.pointer.html#method.add)
///
/// ## Safety
///
/// See [`.offset()`](Self::offset).
#[inline]
#[must_use = "returns a new bit-pointer rather than modifying its argument"]
pub unsafe fn add(self, count: usize) -> Self {
self.offset(count as isize)
}
/// Adjusts a bit-pointer downwards in memory. This is equivalent to
/// `.offset((count as isize).wrapping_neg())`.
///
/// `count` is in units of bits.
///
/// ## Original
///
/// [`pointer::sub`](https://doc.rust-lang.org/std/primitive.pointer.html#method.sub)
///
/// ## Safety
///
/// See [`.offset()`](Self::offset).
#[inline]
#[must_use = "returns a new bit-pointer rather than modifying its argument"]
pub unsafe fn sub(self, count: usize) -> Self {
self.offset((count as isize).wrapping_neg())
}
/// Adjusts a bit-pointer upwards in memory, using wrapping semantics. This
/// is equivalent to `.wrapping_offset(count as isize)`.
///
/// `count` is in units of bits.
///
/// ## Original
///
/// [`pointer::wrapping_add`](https://doc.rust-lang.org/std/primitive.pointer.html#method.wrapping_add)
///
/// ## Safety
///
/// See [`.wrapping_offset()`](Self::wrapping_offset).
#[inline]
#[must_use = "returns a new bit-pointer rather than modifying its argument"]
pub fn wrapping_add(self, count: usize) -> Self {
self.wrapping_offset(count as isize)
}
/// Adjusts a bit-pointer downwards in memory, using wrapping semantics.
/// This is equivalent to
/// `.wrapping_offset((count as isize).wrapping_neg())`.
///
/// `count` is in units of bits.
///
/// ## Original
///
/// [`pointer::wrapping_add`](https://doc.rust-lang.org/std/primitive.pointer.html#method.wrapping_add)
///
/// ## Safety
///
/// See [`.wrapping_offset()`](Self::wrapping_offset).
#[inline]
#[must_use = "returns a new bit-pointer rather than modifying its argument"]
pub fn wrapping_sub(self, count: usize) -> Self {
self.wrapping_offset((count as isize).wrapping_neg())
}
/// Reads the bit from `*self`.
///
/// ## Original
///
/// [`pointer::read`](https://doc.rust-lang.org/std/primitive.pointer.html#method.read)
///
/// ## Safety
///
/// See [`ptr::read`](crate::ptr::read).
#[inline]
pub unsafe fn read(self) -> bool {
(*self.ptr.to_const()).load_value().get_bit::<O>(self.bit)
}
/// Reads the bit from `*self` using a volatile load.
///
/// Prefer using a crate such as [`voladdress`][0] to manage volatile I/O
/// and use `bitvec` only on the local objects it provides. Individual I/O
/// operations for individual bits are likely not the behavior you want.
///
/// ## Original
///
/// [`pointer::read_volatile`](https://doc.rust-lang.org/std/primitive.pointer.html#method.read_volatile)
///
/// ## Safety
///
/// See [`ptr::read_volatile`](crate::ptr::read_volatile).
///
/// [0]: https://docs.rs/voladdress/later/voladdress
#[inline]
pub unsafe fn read_volatile(self) -> bool {
self.ptr.to_const().read_volatile().get_bit::<O>(self.bit)
}
/// Reads the bit from `*self` using an unaligned memory access.
///
/// `BitPtr` forbids unaligned addresses. If you have such an address, you
/// must perform your memory accesses on the raw element, and only use
/// `bitvec` on a well-aligned stack temporary. This method should never be
/// necessary.
///
/// ## Original
///
/// [`pointer::read_unaligned`](https://doc.rust-lang.org/std/primitive.pointer.html#method.read_unaligned)
///
/// ## Safety
///
/// See [`ptr::read_unaligned`](crate::ptr::read_unaligned)
#[inline]
#[deprecated = "`BitPtr` does not have unaligned addresses"]
pub unsafe fn read_unaligned(self) -> bool {
self.ptr.to_const().read_unaligned().get_bit::<O>(self.bit)
}
/// Copies `count` bits from `self` to `dest`. The source and destination
/// may overlap.
///
/// Note that overlap is only defined when `O` and `O2` are the same type.
/// If they differ, then `bitvec` does not define overlap, and assumes that
/// they are wholly discrete in memory.
///
/// ## Original
///
/// [`pointer::copy_to`](https://doc.rust-lang.org/std/primitive.pointer.html#method.copy_to)
///
/// ## Safety
///
/// See [`ptr::copy`](crate::ptr::copy).
#[inline]
#[cfg(not(tarpaulin_include))]
pub unsafe fn copy_to<T2, O2>(self, dest: BitPtr<Mut, T2, O2>, count: usize)
where
T2: BitStore,
O2: BitOrder,
{
super::copy(self.to_const(), dest, count);
}
/// Copies `count` bits from `self` to `dest`. The source and destination
/// may *not* overlap.
///
/// ## Original
///
/// [`pointer::copy_to_nonoverlapping`](https://doc.rust-lang.org/std/primitive.pointer.html#method.copy_to_nonoverlapping)
///
/// ## Safety
///
/// See [`ptr::copy_nonoverlapping`](crate::ptr::copy_nonoverlapping).
#[inline]
#[cfg(not(tarpaulin_include))]
pub unsafe fn copy_to_nonoverlapping<T2, O2>(
self,
dest: BitPtr<Mut, T2, O2>,
count: usize,
) where
T2: BitStore,
O2: BitOrder,
{
super::copy_nonoverlapping(self.to_const(), dest, count);
}
/// Computes the offset (in bits) that needs to be applied to the
/// bit-pointer in order to make it aligned to the given *byte* alignment.
///
/// “Alignment” here means that the bit-pointer selects the starting bit of
/// a memory location whose address satisfies the requested alignment.
///
/// `align` is measured in **bytes**. If you wish to align your bit-pointer
/// to a specific fraction (½, ¼, or ⅛ of one byte), please file an issue
/// and I will work on adding this functionality.
///
/// ## Original
///
/// [`pointer::align_offset`](https://doc.rust-lang.org/std/primitive.pointer.html#method.align_offset)
///
/// ## Notes
///
/// If the base-element address of the bit-pointer is already aligned to
/// `align`, then this will return the bit-offset required to select the
/// first bit of the successor element.
///
/// If it is not possible to align the bit-pointer, then the implementation
/// returns `usize::MAX`.
///
/// The return value is measured in bits, not `T` elements or bytes. The
/// only thing you can do with it is pass it into [`.add()`] or
/// [`.wrapping_add()`].
///
/// Note from the standard library: It is permissible for the implementation
/// to *always* return `usize::MAX`. Only your algorithm’s performance can
/// depend on getting a usable offset here; it must be correct independently
/// of this function providing a useful value.
///
/// ## Safety
///
/// There are no guarantees whatsoëver that offsetting the bit-pointer will
/// not overflow or go beyond the allocation that the bit-pointer selects.
/// It is up to the caller to ensure that the returned offset is correct in
/// all terms other than alignment.
///
/// ## Panics
///
/// This method panics if `align` is not a power of two.
///
/// ## Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let data = [0u8; 3];
/// let ptr = BitPtr::<_, _, Lsb0>::from_slice(&data);
/// let ptr = unsafe { ptr.add(2) };
/// let count = ptr.align_offset(2);
/// assert!(count >= 6);
/// ```
///
/// [`.add()`]: Self::add
/// [`.wrapping_add()`]: Self::wrapping_add
#[inline]
pub fn align_offset(self, align: usize) -> usize {
let width = mem::bits_of::<T::Mem>();
match (
self.ptr.to_const().align_offset(align),
self.bit.into_inner() as usize,
) {
(0, 0) => 0,
(0, head) => align * mem::bits_of::<u8>() - head,
(usize::MAX, _) => usize::MAX,
(elts, head) => elts.wrapping_mul(width).wrapping_sub(head),
}
}
}
/// Port of the `*mut bool` inherent API.
impl<T, O> BitPtr<Mut, T, O>
where
T: BitStore,
O: BitOrder,
{
/// Produces a proxy reference to the referent bit.
///
/// Because `BitPtr` guarantees that it is non-null and well-aligned, this
/// never returns `None`. However, this is still unsafe to call on any
/// bit-pointers created from conjured values rather than known references.
///
/// ## Original
///
/// [`pointer::as_mut`](https://doc.rust-lang.org/std/primitive.pointer.html#method.as_mut)
///
/// ## API Differences
///
/// This produces a proxy type rather than a true reference. The proxy
/// implements `DerefMut<Target = bool>`, and can be converted to
/// `&mut bool` with a reborrow `&mut *`.
///
/// Writes to the proxy are not reflected in the proxied location until the
/// proxy is destroyed, either through `Drop` or its [`.commit()`] method.
///
/// ## Safety
///
/// Since `BitPtr` does not permit null or misaligned pointers, this method
/// will always dereference the pointer in order to create the proxy. As
/// such, you must ensure the following conditions are met:
///
/// - the pointer must be dereferenceable as defined in the standard library
/// documentation
/// - the pointer must point to an initialized instance of `T`
/// - you must ensure that no other pointer will race to modify the referent
/// location while this call is reading from memory to produce the proxy
/// - you must ensure that no other `bitvec` handle targets the referent bit
///
/// ## Examples
///
/// ```rust
/// use bitvec::prelude::*;
///
/// let mut data = 0u8;
/// let ptr = BitPtr::<_, _, Lsb0>::from_mut(&mut data);
/// let mut val = unsafe { ptr.as_mut() }.unwrap();
/// assert!(!*val);
/// *val = true;
/// assert!(*val);
/// ```
///
/// [`.commit()`]: crate::ptr::BitRef::commit
#[inline]
pub unsafe fn as_mut<'a>(self) -> Option<BitRef<'a, Mut, T, O>> {
Some(BitRef::from_bitptr(self))
}
/// Copies `count` bits from the region starting at `src` to the region
/// starting at `self`.
///
/// The regions are free to overlap; the implementation will detect overlap
/// and correctly avoid it.
///
/// Note: this has the *opposite* argument order from [`ptr::copy`]: `self`
/// is the destination, not the source.
///
/// ## Original
///
/// [`pointer::copy_from`](https://doc.rust-lang.org/std/primitive.pointer.html#method.copy_from)
///
/// ## Safety
///
/// See [`ptr::copy`].
///
/// [`ptr::copy`]: crate::ptr::copy
#[inline]
#[cfg(not(tarpaulin_include))]
pub unsafe fn copy_from<T2, O2>(
self,
src: BitPtr<Const, T2, O2>,
count: usize,
) where
T2: BitStore,
O2: BitOrder,
{
src.copy_to(self, count);
}
/// Copies `count` bits from the region starting at `src` to the region
/// starting at `self`.
///
/// Unlike [`.copy_from()`], the two regions may *not* overlap; this method
/// does not attempt to detect overlap and thus may have a slight
/// performance boost over the overlap-handling `.copy_from()`.
///
/// Note: this has the *opposite* argument order from
/// [`ptr::copy_nonoverlapping`]: `self` is the destination, not the source.
///
/// ## Original
///
/// [`pointer::copy_from_nonoverlapping`](https://doc.rust-lang.org/std/primitive.pointer.html#method.copy_from_nonoverlapping)
///
/// ## Safety
///
/// See [`ptr::copy_nonoverlapping`].
///
/// [`.copy_from()`]: Self::copy_from
#[inline]
#[cfg(not(tarpaulin_include))]
pub unsafe fn copy_from_nonoverlapping<T2, O2>(
self,
src: BitPtr<Const, T2, O2>,
count: usize,
) where
T2: BitStore,
O2: BitOrder,
{
src.copy_to_nonoverlapping(self, count);
}
/// Runs the destructor of the referent value.
///
/// `bool` has no destructor; this function does nothing.
///
/// ## Original
///
/// [`pointer::drop_in_place`](https://doc.rust-lang.org/std/primitive.pointer.html#method.drop_in_place)
///
/// ## Safety
///
/// See [`ptr::drop_in_place`].
///
/// [`ptr::drop_in_place`]: crate::ptr::drop_in_place
#[inline]
#[deprecated = "this has no effect, and should not be called"]
pub fn drop_in_place(self) {}
/// Writes a new bit into the given location.
///
/// ## Original
///
/// [`pointer::write`](https://doc.rust-lang.org/std/primitive.pointer.html#method.write)
///
/// ## Safety
///
/// See [`ptr::write`].
///
/// [`ptr::write`]: crate::ptr::write
#[inline]
pub unsafe fn write(self, value: bool) {
self.replace(value);
}
/// Writes a new bit using volatile I/O operations.
///
/// Because processors do not generally have single-bit read or write
/// instructions, this must perform a volatile read of the entire memory
/// location, perform the write locally, then perform another volatile write
/// to the entire location. These three steps are guaranteed to be
/// sequential with respect to each other, but are not guaranteed to be
/// atomic.
///
/// Volatile operations are intended to act on I/O memory, and are *only*
/// guaranteed not to be elided or reördered by the compiler across other
/// I/O operations.
///
/// You should not use `bitvec` to act on volatile memory. You should use a
/// crate specialized for volatile I/O work, such as [`voladdr`], and use it
/// to explicitly manage the I/O and ask it to perform `bitvec` work only on
/// the local snapshot of a volatile location.
///
/// ## Original
///
/// [`pointer::write_volatile`](https://doc.rust-lang.org/std/primitive.pointer.html#method.write_volatile)
///
/// ## Safety
///
/// See [`ptr::write_volatile`].
///
/// [`ptr::write_volatile`]: crate::ptr::write_volatile
/// [`voladdr`]: https://docs.rs/voladdr/latest/voladdr
#[inline]
#[allow(clippy::needless_borrow)] // Clippy is wrong.
pub unsafe fn write_volatile(self, value: bool) {
let ptr = self.ptr.to_mut();
let mut tmp = ptr.read_volatile();
Self::new_unchecked((&mut tmp).into(), self.bit).write(value);
ptr.write_volatile(tmp);
}
/// Writes a bit into memory, tolerating unaligned addresses.
///
/// `BitPtr` does not have unaligned addresses. `BitPtr` itself is capable
/// of operating on misaligned addresses, but elects to disallow use of them
/// in keeping with the rest of `bitvec`’s requirements.
///
/// ## Original
///
/// [`pointer::write_unaligned`](https://doc.rust-lang.org/std/primitive.pointer.html#method.write_unaligned)
///
/// ## Safety
///
/// See [`ptr::write_unaligned`].
///
/// [`ptr::write_unaligned`]: crate::ptr::write_unaligned
#[inline]
#[allow(clippy::needless_borrow)] // Clippy is wrong.
#[deprecated = "`BitPtr` does not have unaligned addresses"]
pub unsafe fn write_unaligned(self, value: bool) {
let ptr = self.ptr.to_mut();
let mut tmp = ptr.read_unaligned();
Self::new_unchecked((&mut tmp).into(), self.bit).write(value);
ptr.write_unaligned(tmp);
}
/// Replaces the bit at `*self` with a new value, returning the previous
/// value.
///
/// ## Original
///
/// [`pointer::replace`](https://doc.rust-lang.org/std/primitive.pointer.html#method.replace)
///
/// ## Safety
///
/// See [`ptr::replace`].
///
/// [`ptr::replace`]: crate::ptr::replace
#[inline]
pub unsafe fn replace(self, value: bool) -> bool {
self.freeze().frozen_write_bit(value)
}
/// Swaps the bits at two mutable locations.
///
/// ## Original
///
/// [`pointer::swap`](https://doc.rust-lang.org/std/primitive.pointer.html#method.swap)
///
/// ## Safety
///
/// See [`ptr::swap`].
///
/// [`ptr::swap`]: crate::ptr::swap
#[inline]
pub unsafe fn swap<T2, O2>(self, with: BitPtr<Mut, T2, O2>)
where
T2: BitStore,
O2: BitOrder,
{
self.write(with.replace(self.read()));
}
}
impl<M, T, O> BitPtr<Frozen<M>, T, O>
where
M: Mutability,
T: BitStore,
O: BitOrder,
{
/// Writes through a bit-pointer that has had its mutability permission
/// removed.
///
/// This is used to allow `BitPtr<Const, _, AliasSafe<T>>` pointers, which
/// are not `Mut` but may still modify memory, to do so.
pub(crate) unsafe fn frozen_write_bit(self, value: bool) -> bool {
(*self.ptr.cast::<T::Access>().to_const())
.write_bit::<O>(self.bit, value)
}
}
#[cfg(not(tarpaulin_include))]
impl<M, T, O> Clone for BitPtr<M, T, O>
where
M: Mutability,
T: BitStore,
O: BitOrder,
{
#[inline]
fn clone(&self) -> Self {
Self {
ptr: self.get_addr(),
..*self
}
}
}
impl<M, T, O> Eq for BitPtr<M, T, O>
where
M: Mutability,
T: BitStore,
O: BitOrder,
{
}
impl<M, T, O> Ord for BitPtr<M, T, O>
where
M: Mutability,
T: BitStore,
O: BitOrder,
{
#[inline]
fn cmp(&self, other: &Self) -> cmp::Ordering {
self.partial_cmp(other).expect(
"BitPtr has a total ordering when type parameters are identical",
)
}
}
impl<M1, M2, T1, T2, O> PartialEq<BitPtr<M2, T2, O>> for BitPtr<M1, T1, O>
where
M1: Mutability,
M2: Mutability,
T1: BitStore,
T2: BitStore,
O: BitOrder,
{
#[inline]
fn eq(&self, other: &BitPtr<M2, T2, O>) -> bool {
if !dvl::match_store::<T1::Mem, T2::Mem>() {
return false;
}
self.get_addr().to_const() as usize
== other.get_addr().to_const() as usize
&& self.bit.into_inner() == other.bit.into_inner()
}
}
impl<M1, M2, T1, T2, O> PartialOrd<BitPtr<M2, T2, O>> for BitPtr<M1, T1, O>
where
M1: Mutability,
M2: Mutability,
T1: BitStore,
T2: BitStore,
O: BitOrder,
{
#[inline]
fn partial_cmp(&self, other: &BitPtr<M2, T2, O>) -> Option<cmp::Ordering> {
if !dvl::match_store::<T1::Mem, T2::Mem>() {
return None;
}
match (self.get_addr().to_const() as usize)
.cmp(&(other.get_addr().to_const() as usize))
{
cmp::Ordering::Equal => {
self.bit.into_inner().partial_cmp(&other.bit.into_inner())
},
ord => Some(ord),
}
}
}
#[cfg(not(tarpaulin_include))]
impl<T, O> From<&T> for BitPtr<Const, T, O>
where
T: BitStore,
O: BitOrder,
{
#[inline]
fn from(elem: &T) -> Self {
Self::from_ref(elem)
}
}
#[cfg(not(tarpaulin_include))]
impl<T, O> From<&mut T> for BitPtr<Mut, T, O>
where
T: BitStore,
O: BitOrder,
{
#[inline]
fn from(elem: &mut T) -> Self {
Self::from_mut(elem)
}
}
impl<T, O> TryFrom<*const T> for BitPtr<Const, T, O>
where
T: BitStore,
O: BitOrder,
{
type Error = BitPtrError<T>;
#[inline]
fn try_from(elem: *const T) -> Result<Self, Self::Error> {
elem.try_conv::<Address<Const, T>>()?
.pipe(|ptr| Self::new(ptr, BitIdx::MIN))?
.pipe(Ok)
}
}
impl<T, O> TryFrom<*mut T> for BitPtr<Mut, T, O>
where
T: BitStore,
O: BitOrder,
{
type Error = BitPtrError<T>;
#[inline]
fn try_from(elem: *mut T) -> Result<Self, Self::Error> {
elem.try_conv::<Address<Mut, T>>()?
.pipe(|ptr| Self::new(ptr, BitIdx::MIN))?
.pipe(Ok)
}
}
impl<M, T, O> Debug for BitPtr<M, T, O>
where
M: Mutability,
T: BitStore,
O: BitOrder,
{
#[inline]
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
write!(
fmt,
"{} Bit<{}, {}>",
M::RENDER,
any::type_name::<T>(),
any::type_name::<O>(),
)?;
Pointer::fmt(self, fmt)
}
}
impl<M, T, O> Pointer for BitPtr<M, T, O>
where
M: Mutability,
T: BitStore,
O: BitOrder,
{
#[inline]
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
fmt.debug_tuple("")
.field(&self.get_addr().fmt_pointer())
.field(&self.bit.fmt_binary())
.finish()
}
}
#[cfg(not(tarpaulin_include))]
impl<M, T, O> Hash for BitPtr<M, T, O>
where
M: Mutability,
T: BitStore,
O: BitOrder,
{
#[inline]
fn hash<H>(&self, state: &mut H)
where H: Hasher {
self.get_addr().hash(state);
self.bit.hash(state);
}
}
impl<M, T, O> Copy for BitPtr<M, T, O>
where
M: Mutability,
T: BitStore,
O: BitOrder,
{
}
/// Errors produced by invalid bit-pointer components.
#[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub enum BitPtrError<T>
where T: BitStore
{
/// Attempted to construct a bit-pointer with the null element address.
Null(NullPtrError),
/// Attempted to construct a bit-pointer with an address not aligned for the
/// element type.
Misaligned(MisalignError<T>),
}
#[cfg(not(tarpaulin_include))]
impl<T> From<MisalignError<T>> for BitPtrError<T>
where T: BitStore
{
#[inline]
fn from(err: MisalignError<T>) -> Self {
Self::Misaligned(err)
}
}
#[cfg(not(tarpaulin_include))]
impl<T> From<NullPtrError> for BitPtrError<T>
where T: BitStore
{
#[inline]
fn from(err: NullPtrError) -> Self {
Self::Null(err)
}
}
#[cfg(not(tarpaulin_include))]
impl<T> Display for BitPtrError<T>
where T: BitStore
{
#[inline]
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
match self {
Self::Null(err) => Display::fmt(err, fmt),
Self::Misaligned(err) => Display::fmt(err, fmt),
}
}
}
#[cfg(feature = "std")]
impl<T> std::error::Error for BitPtrError<T> where T: BitStore {}