zeroize/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
#![no_std]
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![doc(
    html_logo_url = "https://raw.githubusercontent.com/RustCrypto/media/6ee8e381/logo.svg",
    html_favicon_url = "https://raw.githubusercontent.com/RustCrypto/media/6ee8e381/logo.svg"
)]
#![warn(missing_docs, rust_2018_idioms, unused_qualifications)]

//! Securely zero memory with a simple trait ([`Zeroize`]) built on stable Rust
//! primitives which guarantee the operation will not be "optimized away".
//!
//! ## About
//!
//! [Zeroing memory securely is hard] - compilers optimize for performance, and
//! in doing so they love to "optimize away" unnecessary zeroing calls. There are
//! many documented "tricks" to attempt to avoid these optimizations and ensure
//! that a zeroing routine is performed reliably.
//!
//! This crate isn't about tricks: it uses [`core::ptr::write_volatile`]
//! and [`core::sync::atomic`] memory fences to provide easy-to-use, portable
//! zeroing behavior which works on all of Rust's core number types and slices
//! thereof, implemented in pure Rust with no usage of FFI or assembly.
//!
//! - No insecure fallbacks!
//! - No dependencies!
//! - No FFI or inline assembly! **WASM friendly** (and tested)!
//! - `#![no_std]` i.e. **embedded-friendly**!
//! - No functionality besides securely zeroing memory!
//! - (Optional) Custom derive support for zeroing complex structures
//!
//! ## Minimum Supported Rust Version
//!
//! Requires Rust **1.72** or newer.
//!
//! In the future, we reserve the right to change MSRV (i.e. MSRV is out-of-scope
//! for this crate's SemVer guarantees), however when we do it will be accompanied
//! by a minor version bump.
//!
//! ## Usage
//!
//! ```
//! use zeroize::Zeroize;
//!
//! // Protip: don't embed secrets in your source code.
//! // This is just an example.
//! let mut secret = b"Air shield password: 1,2,3,4,5".to_vec();
//! // [ ... ] open the air shield here
//!
//! // Now that we're done using the secret, zero it out.
//! secret.zeroize();
//! ```
//!
//! The [`Zeroize`] trait is impl'd on all of Rust's core scalar types including
//! integers, floats, `bool`, and `char`.
//!
//! Additionally, it's implemented on slices and `IterMut`s of the above types.
//!
//! When the `alloc` feature is enabled (which it is by default), it's also
//! impl'd for `Vec<T>` for the above types as well as `String`, where it provides
//! [`Vec::clear`] / [`String::clear`]-like behavior (truncating to zero-length)
//! but ensures the backing memory is securely zeroed with some caveats.
//!
//! With the `std` feature enabled (which it is **not** by default), [`Zeroize`]
//! is also implemented for [`CString`]. After calling `zeroize()` on a `CString`,
//! its internal buffer will contain exactly one nul byte. The backing
//! memory is zeroed by converting it to a `Vec<u8>` and back into a `CString`.
//! (NOTE: see "Stack/Heap Zeroing Notes" for important `Vec`/`String`/`CString` details)
//!
//! [`CString`]: https://doc.rust-lang.org/std/ffi/struct.CString.html
//!
//! The [`DefaultIsZeroes`] marker trait can be impl'd on types which also
//! impl [`Default`], which implements [`Zeroize`] by overwriting a value with
//! the default value.
//!
//! ## Custom Derive Support
//!
//! This crate has custom derive support for the `Zeroize` trait,
//! gated under the `zeroize` crate's `zeroize_derive` Cargo feature,
//! which automatically calls `zeroize()` on all members of a struct
//! or tuple struct.
//!
//! Attributes supported for `Zeroize`:
//!
//! On the item level:
//! - `#[zeroize(drop)]`: *deprecated* use `ZeroizeOnDrop` instead
//! - `#[zeroize(bound = "T: MyTrait")]`: this replaces any trait bounds
//!   inferred by zeroize
//!
//! On the field level:
//! - `#[zeroize(skip)]`: skips this field or variant when calling `zeroize()`
//!
//! Attributes supported for `ZeroizeOnDrop`:
//!
//! On the field level:
//! - `#[zeroize(skip)]`: skips this field or variant when calling `zeroize()`
//!
//! Example which derives `Drop`:
//!
//! ```
//! # #[cfg(feature = "zeroize_derive")]
//! # {
//! use zeroize::{Zeroize, ZeroizeOnDrop};
//!
//! // This struct will be zeroized on drop
//! #[derive(Zeroize, ZeroizeOnDrop)]
//! struct MyStruct([u8; 32]);
//! # }
//! ```
//!
//! Example which does not derive `Drop` (useful for e.g. `Copy` types)
//!
//! ```
//! #[cfg(feature = "zeroize_derive")]
//! # {
//! use zeroize::Zeroize;
//!
//! // This struct will *NOT* be zeroized on drop
//! #[derive(Copy, Clone, Zeroize)]
//! struct MyStruct([u8; 32]);
//! # }
//! ```
//!
//! Example which only derives `Drop`:
//!
//! ```
//! # #[cfg(feature = "zeroize_derive")]
//! # {
//! use zeroize::ZeroizeOnDrop;
//!
//! // This struct will be zeroized on drop
//! #[derive(ZeroizeOnDrop)]
//! struct MyStruct([u8; 32]);
//! # }
//! ```
//!
//! ## `Zeroizing<Z>`: wrapper for zeroizing arbitrary values on drop
//!
//! `Zeroizing<Z: Zeroize>` is a generic wrapper type that impls `Deref`
//! and `DerefMut`, allowing access to an inner value of type `Z`, and also
//! impls a `Drop` handler which calls `zeroize()` on its contents:
//!
//! ```
//! use zeroize::Zeroizing;
//!
//! fn use_secret() {
//!     let mut secret = Zeroizing::new([0u8; 5]);
//!
//!     // Set the air shield password
//!     // Protip (again): don't embed secrets in your source code.
//!     secret.copy_from_slice(&[1, 2, 3, 4, 5]);
//!     assert_eq!(secret.as_ref(), &[1, 2, 3, 4, 5]);
//!
//!     // The contents of `secret` will be automatically zeroized on drop
//! }
//!
//! # use_secret()
//! ```
//!
//! ## What guarantees does this crate provide?
//!
//! This crate guarantees the following:
//!
//! 1. The zeroing operation can't be "optimized away" by the compiler.
//! 2. All subsequent reads to memory will see "zeroized" values.
//!
//! LLVM's volatile semantics ensure #1 is true.
//!
//! Additionally, thanks to work by the [Unsafe Code Guidelines Working Group],
//! we can now fairly confidently say #2 is true as well. Previously there were
//! worries that the approach used by this crate (mixing volatile and
//! non-volatile accesses) was undefined behavior due to language contained
//! in the documentation for `write_volatile`, however after some discussion
//! [these remarks have been removed] and the specific usage pattern in this
//! crate is considered to be well-defined.
//!
//! Additionally this crate leverages [`core::sync::atomic::compiler_fence`]
//! with the strictest ordering
//! ([`Ordering::SeqCst`]) as a
//! precaution to help ensure reads are not reordered before memory has been
//! zeroed.
//!
//! All of that said, there is still potential for microarchitectural attacks
//! (ala Spectre/Meltdown) to leak "zeroized" secrets through covert channels.
//! This crate makes no guarantees that zeroized values cannot be leaked
//! through such channels, as they represent flaws in the underlying hardware.
//!
//! ## Stack/Heap Zeroing Notes
//!
//! This crate can be used to zero values from either the stack or the heap.
//!
//! However, be aware several operations in Rust can unintentionally leave
//! copies of data in memory. This includes but is not limited to:
//!
//! - Moves and [`Copy`]
//! - Heap reallocation when using [`Vec`] and [`String`]
//! - Borrowers of a reference making copies of the data
//!
//! [`Pin`][`core::pin::Pin`] can be leveraged in conjunction with this crate
//! to ensure data kept on the stack isn't moved.
//!
//! The `Zeroize` impls for `Vec`, `String` and `CString` zeroize the entire
//! capacity of their backing buffer, but cannot guarantee copies of the data
//! were not previously made by buffer reallocation. It's therefore important
//! when attempting to zeroize such buffers to initialize them to the correct
//! capacity, and take care to prevent subsequent reallocation.
//!
//! The `secrecy` crate provides higher-level abstractions for eliminating
//! usage patterns which can cause reallocations:
//!
//! <https://crates.io/crates/secrecy>
//!
//! ## What about: clearing registers, mlock, mprotect, etc?
//!
//! This crate is focused on providing simple, unobtrusive support for reliably
//! zeroing memory using the best approach possible on stable Rust.
//!
//! Clearing registers is a difficult problem that can't easily be solved by
//! something like a crate, and requires either inline ASM or rustc support.
//! See <https://github.com/rust-lang/rust/issues/17046> for background on
//! this particular problem.
//!
//! Other memory protection mechanisms are interesting and useful, but often
//! overkill (e.g. defending against RAM scraping or attackers with swap access).
//! In as much as there may be merit to these approaches, there are also many
//! other crates that already implement more sophisticated memory protections.
//! Such protections are explicitly out-of-scope for this crate.
//!
//! Zeroing memory is [good cryptographic hygiene] and this crate seeks to promote
//! it in the most unobtrusive manner possible. This includes omitting complex
//! `unsafe` memory protection systems and just trying to make the best memory
//! zeroing crate available.
//!
//! [Zeroing memory securely is hard]: http://www.daemonology.net/blog/2014-09-04-how-to-zero-a-buffer.html
//! [Unsafe Code Guidelines Working Group]: https://github.com/rust-lang/unsafe-code-guidelines
//! [these remarks have been removed]: https://github.com/rust-lang/rust/pull/60972
//! [good cryptographic hygiene]: https://github.com/veorq/cryptocoding#clean-memory-of-secret-data
//! [`Ordering::SeqCst`]: core::sync::atomic::Ordering::SeqCst

#[cfg(feature = "alloc")]
extern crate alloc;

#[cfg(feature = "std")]
extern crate std;

#[cfg(feature = "zeroize_derive")]
pub use zeroize_derive::{Zeroize, ZeroizeOnDrop};

#[cfg(target_arch = "aarch64")]
mod aarch64;
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
mod x86;

use core::{
    marker::{PhantomData, PhantomPinned},
    mem::{self, MaybeUninit},
    num::{
        self, NonZeroI128, NonZeroI16, NonZeroI32, NonZeroI64, NonZeroI8, NonZeroIsize,
        NonZeroU128, NonZeroU16, NonZeroU32, NonZeroU64, NonZeroU8, NonZeroUsize,
    },
    ops, ptr,
    slice::IterMut,
    sync::atomic,
};

#[cfg(feature = "alloc")]
use alloc::{boxed::Box, string::String, vec::Vec};

#[cfg(feature = "std")]
use std::ffi::CString;

/// Trait for securely erasing values from memory.
pub trait Zeroize {
    /// Zero out this object from memory using Rust intrinsics which ensure the
    /// zeroization operation is not "optimized away" by the compiler.
    fn zeroize(&mut self);
}

/// Marker trait signifying that this type will [`Zeroize::zeroize`] itself on [`Drop`].
pub trait ZeroizeOnDrop {}

/// Marker trait for types whose [`Default`] is the desired zeroization result
pub trait DefaultIsZeroes: Copy + Default + Sized {}

/// Fallible trait for representing cases where zeroization may or may not be
/// possible.
///
/// This is primarily useful for scenarios like reference counted data, where
/// zeroization is only possible when the last reference is dropped.
pub trait TryZeroize {
    /// Try to zero out this object from memory using Rust intrinsics which
    /// ensure the zeroization operation is not "optimized away" by the
    /// compiler.
    #[must_use]
    fn try_zeroize(&mut self) -> bool;
}

impl<Z> Zeroize for Z
where
    Z: DefaultIsZeroes,
{
    fn zeroize(&mut self) {
        volatile_write(self, Z::default());
        atomic_fence();
    }
}

macro_rules! impl_zeroize_with_default {
    ($($type:ty),+) => {
        $(impl DefaultIsZeroes for $type {})+
    };
}

#[rustfmt::skip]
impl_zeroize_with_default! {
    PhantomPinned, (), bool, char,
    f32, f64,
    i8, i16, i32, i64, i128, isize,
    u8, u16, u32, u64, u128, usize
}

/// `PhantomPinned` is zero sized so provide a ZeroizeOnDrop implementation.
impl ZeroizeOnDrop for PhantomPinned {}

/// `()` is zero sized so provide a ZeroizeOnDrop implementation.
impl ZeroizeOnDrop for () {}

macro_rules! impl_zeroize_for_non_zero {
    ($($type:ty),+) => {
        $(
            impl Zeroize for $type {
                fn zeroize(&mut self) {
                    const ONE: $type = match <$type>::new(1) {
                        Some(one) => one,
                        None => unreachable!(),
                    };
                    volatile_write(self, ONE);
                    atomic_fence();
                }
            }
        )+
    };
}

impl_zeroize_for_non_zero!(
    NonZeroI8,
    NonZeroI16,
    NonZeroI32,
    NonZeroI64,
    NonZeroI128,
    NonZeroIsize,
    NonZeroU8,
    NonZeroU16,
    NonZeroU32,
    NonZeroU64,
    NonZeroU128,
    NonZeroUsize
);

impl<Z> Zeroize for num::Wrapping<Z>
where
    Z: Zeroize,
{
    fn zeroize(&mut self) {
        self.0.zeroize();
    }
}

/// Impl [`Zeroize`] on arrays of types that impl [`Zeroize`].
impl<Z, const N: usize> Zeroize for [Z; N]
where
    Z: Zeroize,
{
    fn zeroize(&mut self) {
        self.iter_mut().zeroize();
    }
}

/// Impl [`ZeroizeOnDrop`] on arrays of types that impl [`ZeroizeOnDrop`].
impl<Z, const N: usize> ZeroizeOnDrop for [Z; N] where Z: ZeroizeOnDrop {}

impl<Z> Zeroize for IterMut<'_, Z>
where
    Z: Zeroize,
{
    fn zeroize(&mut self) {
        for elem in self {
            elem.zeroize();
        }
    }
}

impl<Z> Zeroize for Option<Z>
where
    Z: Zeroize,
{
    fn zeroize(&mut self) {
        if let Some(value) = self {
            value.zeroize();

            // Ensures self is None and that the value was dropped. Without the take, the drop
            // of the (zeroized) value isn't called, which might lead to a leak or other
            // unexpected behavior. For example, if this were Option<Vec<T>>, the above call to
            // zeroize would not free the allocated memory, but the the `take` call will.
            self.take();
        }

        // Ensure that if the `Option` were previously `Some` but a value was copied/moved out
        // that the remaining space in the `Option` is zeroized.
        //
        // Safety:
        //
        // The memory pointed to by `self` is valid for `mem::size_of::<Self>()` bytes.
        // It is also properly aligned, because `u8` has an alignment of `1`.
        unsafe {
            volatile_set((self as *mut Self).cast::<u8>(), 0, mem::size_of::<Self>());
        }

        // Ensures self is overwritten with the `None` bit pattern. volatile_write can't be
        // used because Option<Z> is not copy.
        //
        // Safety:
        //
        // self is safe to replace with `None`, which the take() call above should have
        // already done semantically. Any value which needed to be dropped will have been
        // done so by take().
        unsafe { ptr::write_volatile(self, None) }

        atomic_fence();
    }
}

impl<Z> ZeroizeOnDrop for Option<Z> where Z: ZeroizeOnDrop {}

/// Impl [`Zeroize`] on [`MaybeUninit`] types.
///
/// This fills the memory with zeroes.
/// Note that this ignore invariants that `Z` might have, because
/// [`MaybeUninit`] removes all invariants.
impl<Z> Zeroize for MaybeUninit<Z> {
    fn zeroize(&mut self) {
        // Safety:
        // `MaybeUninit` is valid for any byte pattern, including zeros.
        unsafe { ptr::write_volatile(self, MaybeUninit::zeroed()) }
        atomic_fence();
    }
}

/// Impl [`Zeroize`] on slices of [`MaybeUninit`] types.
///
/// This impl can eventually be optimized using an memset intrinsic,
/// such as [`core::intrinsics::volatile_set_memory`].
///
/// This fills the slice with zeroes.
///
/// Note that this ignore invariants that `Z` might have, because
/// [`MaybeUninit`] removes all invariants.
impl<Z> Zeroize for [MaybeUninit<Z>] {
    fn zeroize(&mut self) {
        let ptr = self.as_mut_ptr().cast::<MaybeUninit<u8>>();
        let size = self.len().checked_mul(mem::size_of::<Z>()).unwrap();
        assert!(size <= isize::MAX as usize);

        // Safety:
        //
        // This is safe, because every valid pointer is well aligned for u8
        // and it is backed by a single allocated object for at least `self.len() * size_pf::<Z>()` bytes.
        // and 0 is a valid value for `MaybeUninit<Z>`
        // The memory of the slice should not wrap around the address space.
        unsafe { volatile_set(ptr, MaybeUninit::zeroed(), size) }
        atomic_fence();
    }
}

/// Impl [`Zeroize`] on slices of types that can be zeroized with [`Default`].
///
/// This impl can eventually be optimized using an memset intrinsic,
/// such as [`core::intrinsics::volatile_set_memory`]. For that reason the
/// blanket impl on slices is bounded by [`DefaultIsZeroes`].
///
/// To zeroize a mut slice of `Z: Zeroize` which does not impl
/// [`DefaultIsZeroes`], call `iter_mut().zeroize()`.
impl<Z> Zeroize for [Z]
where
    Z: DefaultIsZeroes,
{
    fn zeroize(&mut self) {
        assert!(self.len() <= isize::MAX as usize);

        // Safety:
        //
        // This is safe, because the slice is well aligned and is backed by a single allocated
        // object for at least `self.len()` elements of type `Z`.
        // `self.len()` is also not larger than an `isize`, because of the assertion above.
        // The memory of the slice should not wrap around the address space.
        unsafe { volatile_set(self.as_mut_ptr(), Z::default(), self.len()) };
        atomic_fence();
    }
}

impl Zeroize for str {
    fn zeroize(&mut self) {
        // Safety:
        // A zeroized byte slice is a valid UTF-8 string.
        unsafe { self.as_bytes_mut().zeroize() }
    }
}

/// [`PhantomData`] is always zero sized so provide a [`Zeroize`] implementation.
impl<Z> Zeroize for PhantomData<Z> {
    fn zeroize(&mut self) {}
}

/// [`PhantomData` is always zero sized so provide a ZeroizeOnDrop implementation.
impl<Z> ZeroizeOnDrop for PhantomData<Z> {}

macro_rules! impl_zeroize_tuple {
    ( $( $type_name:ident ),+ ) => {
        impl<$($type_name: Zeroize),+> Zeroize for ($($type_name,)+) {
            fn zeroize(&mut self) {
                #[allow(non_snake_case)]
                let ($($type_name,)+) = self;
                $($type_name.zeroize());+
            }
        }

        impl<$($type_name: ZeroizeOnDrop),+> ZeroizeOnDrop for ($($type_name,)+) { }
    }
}

// Generic implementations for tuples up to 10 parameters.
impl_zeroize_tuple!(A);
impl_zeroize_tuple!(A, B);
impl_zeroize_tuple!(A, B, C);
impl_zeroize_tuple!(A, B, C, D);
impl_zeroize_tuple!(A, B, C, D, E);
impl_zeroize_tuple!(A, B, C, D, E, F);
impl_zeroize_tuple!(A, B, C, D, E, F, G);
impl_zeroize_tuple!(A, B, C, D, E, F, G, H);
impl_zeroize_tuple!(A, B, C, D, E, F, G, H, I);
impl_zeroize_tuple!(A, B, C, D, E, F, G, H, I, J);

#[cfg(feature = "alloc")]
impl<Z> Zeroize for Vec<Z>
where
    Z: Zeroize,
{
    /// "Best effort" zeroization for `Vec`.
    ///
    /// Ensures the entire capacity of the `Vec` is zeroed. Cannot ensure that
    /// previous reallocations did not leave values on the heap.
    fn zeroize(&mut self) {
        // Zeroize all the initialized elements.
        self.iter_mut().zeroize();

        // Set the Vec's length to 0 and drop all the elements.
        self.clear();

        // Zero the full capacity of `Vec`.
        self.spare_capacity_mut().zeroize();
    }
}

#[cfg(feature = "alloc")]
impl<Z> ZeroizeOnDrop for Vec<Z> where Z: ZeroizeOnDrop {}

#[cfg(feature = "alloc")]
impl<Z> Zeroize for Box<[Z]>
where
    Z: Zeroize,
{
    /// Unlike `Vec`, `Box<[Z]>` cannot reallocate, so we can be sure that we are not leaving
    /// values on the heap.
    fn zeroize(&mut self) {
        self.iter_mut().zeroize();
    }
}

#[cfg(feature = "alloc")]
impl<Z> ZeroizeOnDrop for Box<[Z]> where Z: ZeroizeOnDrop {}

#[cfg(feature = "alloc")]
impl Zeroize for Box<str> {
    fn zeroize(&mut self) {
        self.as_mut().zeroize();
    }
}

#[cfg(feature = "alloc")]
impl Zeroize for String {
    fn zeroize(&mut self) {
        unsafe { self.as_mut_vec() }.zeroize();
    }
}

#[cfg(feature = "std")]
impl Zeroize for CString {
    fn zeroize(&mut self) {
        // mem::take uses replace internally to swap the pointer
        // Unfortunately this results in an allocation for a Box::new(&[0]) as CString must
        // contain a trailing zero byte
        let this = mem::take(self);

        // - CString::into_bytes_with_nul calls ::into_vec which takes ownership of the heap pointer
        // as a Vec<u8>
        // - Calling .zeroize() on the resulting vector clears out the bytes
        // From: https://github.com/RustCrypto/utils/pull/759#issuecomment-1087976570
        let mut buf = this.into_bytes_with_nul();
        buf.zeroize();

        // expect() should never fail, because zeroize() truncates the Vec
        let zeroed = CString::new(buf).expect("buf not truncated");

        // Replace self by the zeroed CString to maintain the original ptr of the buffer
        let _ = mem::replace(self, zeroed);
    }
}

/// `Zeroizing` is a a wrapper for any `Z: Zeroize` type which implements a
/// `Drop` handler which zeroizes dropped values.
#[derive(Debug, Default, Eq, PartialEq)]
pub struct Zeroizing<Z: Zeroize>(Z);

impl<Z> Zeroizing<Z>
where
    Z: Zeroize,
{
    /// Move value inside a `Zeroizing` wrapper which ensures it will be
    /// zeroized when it's dropped.
    #[inline(always)]
    pub fn new(value: Z) -> Self {
        Self(value)
    }
}

impl<Z: Zeroize + Clone> Clone for Zeroizing<Z> {
    #[inline(always)]
    fn clone(&self) -> Self {
        Self(self.0.clone())
    }

    #[inline(always)]
    fn clone_from(&mut self, source: &Self) {
        self.0.zeroize();
        self.0.clone_from(&source.0);
    }
}

impl<Z> From<Z> for Zeroizing<Z>
where
    Z: Zeroize,
{
    #[inline(always)]
    fn from(value: Z) -> Zeroizing<Z> {
        Zeroizing(value)
    }
}

impl<Z> ops::Deref for Zeroizing<Z>
where
    Z: Zeroize,
{
    type Target = Z;

    #[inline(always)]
    fn deref(&self) -> &Z {
        &self.0
    }
}

impl<Z> ops::DerefMut for Zeroizing<Z>
where
    Z: Zeroize,
{
    #[inline(always)]
    fn deref_mut(&mut self) -> &mut Z {
        &mut self.0
    }
}

impl<T, Z> AsRef<T> for Zeroizing<Z>
where
    T: ?Sized,
    Z: AsRef<T> + Zeroize,
{
    #[inline(always)]
    fn as_ref(&self) -> &T {
        self.0.as_ref()
    }
}

impl<T, Z> AsMut<T> for Zeroizing<Z>
where
    T: ?Sized,
    Z: AsMut<T> + Zeroize,
{
    #[inline(always)]
    fn as_mut(&mut self) -> &mut T {
        self.0.as_mut()
    }
}

impl<Z> Zeroize for Zeroizing<Z>
where
    Z: Zeroize,
{
    fn zeroize(&mut self) {
        self.0.zeroize();
    }
}

impl<Z> ZeroizeOnDrop for Zeroizing<Z> where Z: Zeroize {}

impl<Z> Drop for Zeroizing<Z>
where
    Z: Zeroize,
{
    fn drop(&mut self) {
        self.0.zeroize()
    }
}

#[cfg(feature = "serde")]
impl<Z> serde::Serialize for Zeroizing<Z>
where
    Z: Zeroize + serde::Serialize,
{
    #[inline(always)]
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: serde::Serializer,
    {
        self.0.serialize(serializer)
    }
}

#[cfg(feature = "serde")]
impl<'de, Z> serde::Deserialize<'de> for Zeroizing<Z>
where
    Z: Zeroize + serde::Deserialize<'de>,
{
    #[inline(always)]
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: serde::Deserializer<'de>,
    {
        Ok(Self(Z::deserialize(deserializer)?))
    }
}

/// Use fences to prevent accesses from being reordered before this
/// point, which should hopefully help ensure that all accessors
/// see zeroes after this point.
#[inline(always)]
fn atomic_fence() {
    atomic::compiler_fence(atomic::Ordering::SeqCst);
}

/// Perform a volatile write to the destination
#[inline(always)]
fn volatile_write<T: Copy + Sized>(dst: &mut T, src: T) {
    unsafe { ptr::write_volatile(dst, src) }
}

/// Perform a volatile `memset` operation which fills a slice with a value
///
/// Safety:
/// The memory pointed to by `dst` must be a single allocated object that is valid for `count`
/// contiguous elements of `T`.
/// `count` must not be larger than an `isize`.
/// `dst` being offset by `mem::size_of::<T> * count` bytes must not wrap around the address space.
/// Also `dst` must be properly aligned.
#[inline(always)]
unsafe fn volatile_set<T: Copy + Sized>(dst: *mut T, src: T, count: usize) {
    // TODO(tarcieri): use `volatile_set_memory` when stabilized
    for i in 0..count {
        // Safety:
        //
        // This is safe because there is room for at least `count` objects of type `T` in the
        // allocation pointed to by `dst`, because `count <= isize::MAX` and because
        // `dst.add(count)` must not wrap around the address space.
        let ptr = dst.add(i);

        // Safety:
        //
        // This is safe, because the pointer is valid and because `dst` is well aligned for `T` and
        // `ptr` is an offset of `dst` by a multiple of `mem::size_of::<T>()` bytes.
        ptr::write_volatile(ptr, src);
    }
}

/// Zeroizes a flat type/struct. Only zeroizes the values that it owns, and it does not work on
/// dynamically sized values or trait objects. It would be inefficient to use this function on a
/// type that already implements `ZeroizeOnDrop`.
///
/// # Safety
/// - The type must not contain references to outside data or dynamically sized data, such as
///   `Vec<T>` or `String`.
/// - Values stored in the type must not have `Drop` impls.
/// - This function can invalidate the type if it is used after this function is called on it.
///   It is advisable to call this function only in `impl Drop`.
/// - The bit pattern of all zeroes must be valid for the data being zeroized. This may not be
///   true for enums and pointers.
///
/// # Incompatible data types
/// Some data types that cannot be safely zeroized using `zeroize_flat_type` include,
/// but are not limited to:
/// - References: `&T` and `&mut T`
/// - Non-nullable types: `NonNull<T>`, `NonZeroU32`, etc.
/// - Enums with explicit non-zero tags.
/// - Smart pointers and collections: `Arc<T>`, `Box<T>`, `Vec<T>`, `HashMap<K, V>`, `String`, etc.
///
/// # Examples
/// Safe usage for a struct containing strictly flat data:
/// ```
/// use zeroize::{ZeroizeOnDrop, zeroize_flat_type};
///
/// struct DataToZeroize {
///     flat_data_1: [u8; 32],
///     flat_data_2: SomeMoreFlatData,
/// }
///
/// struct SomeMoreFlatData(u64);
///
/// impl Drop for DataToZeroize {
///     fn drop(&mut self) {
///         unsafe { zeroize_flat_type(self as *mut Self) }
///     }
/// }
/// impl ZeroizeOnDrop for DataToZeroize {}
///
/// let mut data = DataToZeroize {
///     flat_data_1: [3u8; 32],
///     flat_data_2: SomeMoreFlatData(123u64)
/// };
///
/// // data gets zeroized when dropped
/// ```
#[inline(always)]
pub unsafe fn zeroize_flat_type<F: Sized>(data: *mut F) {
    let size = mem::size_of::<F>();
    // Safety:
    //
    // This is safe because `mem::size_of<T>()` returns the exact size of the object in memory, and
    // `data_ptr` points directly to the first byte of the data.
    volatile_set(data as *mut u8, 0, size);
    atomic_fence()
}

/// Internal module used as support for `AssertZeroizeOnDrop`.
#[doc(hidden)]
pub mod __internal {
    use super::*;

    /// Auto-deref workaround for deriving `ZeroizeOnDrop`.
    pub trait AssertZeroizeOnDrop {
        fn zeroize_or_on_drop(self);
    }

    impl<T: ZeroizeOnDrop + ?Sized> AssertZeroizeOnDrop for &&mut T {
        fn zeroize_or_on_drop(self) {}
    }

    /// Auto-deref workaround for deriving `ZeroizeOnDrop`.
    pub trait AssertZeroize {
        fn zeroize_or_on_drop(&mut self);
    }

    impl<T: Zeroize + ?Sized> AssertZeroize for T {
        fn zeroize_or_on_drop(&mut self) {
            self.zeroize()
        }
    }
}