bitvec/
store.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
#![doc = include_str!("../doc/store.md")]

use core::{
	cell::Cell,
	fmt::Debug,
};

use funty::Integral;

use crate::{
	access::*,
	index::BitIdx,
	mem::{
		self,
		BitRegister,
	},
	order::BitOrder,
};

#[doc = include_str!("../doc/store/BitStore.md")]
pub trait BitStore: 'static + Debug {
	/// The element type used in the memory region underlying a `BitSlice`. It
	/// is *always* one of the unsigned integer fundamentals.
	type Mem: BitRegister + BitStore<Mem = Self::Mem>;
	/// A type that selects the appropriate load/store instructions when
	/// accessing the memory bus. It determines what instructions are used when
	/// moving a `Self::Mem` value between the processor and the memory system.
	///
	/// This must be *at least* able to manage aliasing.
	type Access: BitAccess<Item = Self::Mem> + BitStore<Mem = Self::Mem>;
	/// A sibling `BitStore` implementor that is known to be alias-safe. It is
	/// used when a `BitSlice` introduces multiple handles that view the same
	/// memory location, and at least one of them has write capabilities to it.
	/// It must have the same underlying memory type, and can only change access
	/// patterns or public-facing usage.
	type Alias: BitStore<Mem = Self::Mem>;
	/// The inverse of `::Alias`. It is used when a `BitSlice` removes the
	/// conditions that required a `T -> T::Alias` transition.
	type Unalias: BitStore<Mem = Self::Mem>;

	/// The zero constant.
	const ZERO: Self;

	/// Wraps a raw memory value as a `BitStore` type.
	fn new(value: Self::Mem) -> Self;

	/// Loads a value out of the memory system according to the `::Access`
	/// rules. This may be called when the value is aliased by a write-capable
	/// reference.
	fn load_value(&self) -> Self::Mem;

	/// Stores a value into the memory system. This is only called when there
	/// are no other handles to the value, and it may bypass `::Access`
	/// constraints.
	fn store_value(&mut self, value: Self::Mem);

	/// Reads a single bit out of the memory system according to the `::Access`
	/// rules. This is lifted from [`BitAccess`] so that it can be used
	/// elsewhere without additional casts.
	///
	/// ## Type Parameters
	///
	/// - `O`: The ordering of bits within `Self::Mem` governing the lookup.
	///
	/// ## Parameters
	///
	/// - `index`: The semantic index of a bit in `*self`.
	///
	/// ## Returns
	///
	/// The value of the bit in `*self` at `BitOrder::at(index)`.
	///
	/// [`BitAccess`]: crate::access::BitAccess
	#[inline]
	fn get_bit<O>(&self, index: BitIdx<Self::Mem>) -> bool
	where O: BitOrder {
		self.load_value() & index.select::<O>().into_inner()
			!= <Self::Mem as Integral>::ZERO
	}

	/// All implementors are required to have their alignment match their size.
	///
	/// Use [`mem::aligned_to_size::<Self>()`][0] to prove this.
	///
	/// [0]: crate::mem::aligned_to_size
	const ALIGNED_TO_SIZE: [(); 1];

	/// All implementors are required to have `Self` and `Self::Alias` be equal
	/// in representation. This is true by fiat for all types except the
	/// unsigned integers.
	///
	/// Use [`mem::layout_eq::<Self, Self::Alias>()`][0] to prove this.
	///
	/// [0]: crate::mem::layout_eq
	const ALIAS_WIDTH: [(); 1];
}

/// Generates `BitStore` implementations for ordinary integers and `Cell`s.
macro_rules! store {
	($($base:ty => $safe:ty);+ $(;)?) => { $(
		impl BitStore for $base {
			type Mem = Self;
			/// The unsigned integers will only be `BitStore` type parameters
			/// for handles to unaliased memory, following the normal Rust
			/// reference rules.
			type Access = Cell<Self>;
			type Alias = $safe;
			type Unalias = Self;

			const ZERO: Self = 0;

			#[inline]
			fn new(value: Self::Mem) -> Self { value }

			#[inline]
			fn load_value(&self) -> Self::Mem {
				*self
			}

			#[inline]
			fn store_value(&mut self, value: Self::Mem) {
				*self = value;
			}

			const ALIGNED_TO_SIZE: [(); 1]
				= [(); mem::aligned_to_size::<Self>() as usize];

			const ALIAS_WIDTH: [(); 1]
				= [(); mem::layout_eq::<Self, Self::Alias>() as usize];
		}

		impl BitStore for $safe {
			type Mem = $base;
			type Access = <Self as BitSafe>::Rad;
			type Alias = Self;
			type Unalias = $base;

			const ZERO: Self = <Self as BitSafe>::ZERO;

			#[inline]
			fn new(value: Self::Mem) -> Self { <Self>::new(value) }

			#[inline]
			fn load_value(&self) -> Self::Mem {
				self.load()
			}

			#[inline]
			fn store_value(&mut self, value: Self::Mem) {
				*self = Self::new(value);
			}

			const ALIGNED_TO_SIZE: [(); 1]
				= [(); mem::aligned_to_size::<Self>() as usize];

			const ALIAS_WIDTH: [(); 1] = [()];
		}

		impl BitStore for Cell<$base> {
			type Mem = $base;
			type Access = Self;
			type Alias = Self;
			type Unalias = Self;

			const ZERO: Self = Self::new(0);

			#[inline]
			fn new(value: Self::Mem) -> Self { <Self>::new(value) }

			#[inline]
			fn load_value(&self) -> Self::Mem {
				self.get()
			}

			#[inline]
			fn store_value(&mut self, value: Self::Mem) {
				*self = Self::new(value);
			}

			const ALIGNED_TO_SIZE: [(); 1]
				= [(); mem::aligned_to_size::<Self>() as usize];

			const ALIAS_WIDTH: [(); 1] = [()];
		}
	)+ };
}

store! {
	u8 => BitSafeU8;
	u16 => BitSafeU16;
	u32 => BitSafeU32;
}

#[cfg(target_pointer_width = "64")]
store!(u64 => BitSafeU64);

store!(usize => BitSafeUsize);

/// Generates `BitStore` implementations for atomic types.
macro_rules! atomic {
	($($size:tt, $base:ty => $atom:ident);+ $(;)?) => { $(
		radium::if_atomic!(if atomic($size) {
			use core::sync::atomic::$atom;

			impl BitStore for $atom {
				type Mem = $base;
				type Access = Self;
				type Alias = Self;
				type Unalias = Self;

				const ZERO: Self = <Self>::new(0);

				#[inline]
				fn new(value: Self::Mem) -> Self { <Self>::new(value) }

				#[inline]
				fn load_value(&self) -> Self::Mem {
					self.load(core::sync::atomic::Ordering::Relaxed)
				}

				#[inline]
				fn store_value(&mut self, value: Self::Mem) {
					*self = Self::new(value);
				}

				const ALIGNED_TO_SIZE: [(); 1]
					= [(); mem::aligned_to_size::<Self>() as usize];

				const ALIAS_WIDTH: [(); 1] = [()];
			}
		});
	)+ };
}

atomic! {
	8, u8 => AtomicU8;
	16, u16 => AtomicU16;
	32, u32 => AtomicU32;
}

#[cfg(target_pointer_width = "64")]
atomic!(64, u64 => AtomicU64);

atomic!(size, usize => AtomicUsize);

#[cfg(test)]
mod tests {
	use static_assertions::*;

	use super::*;
	use crate::prelude::*;

	#[test]
	fn load_store() {
		let mut word = 0usize;

		word.store_value(39);
		assert_eq!(word.load_value(), 39);

		let mut safe = BitSafeUsize::new(word);
		safe.store_value(57);
		assert_eq!(safe.load_value(), 57);

		let mut cell = Cell::new(0usize);
		cell.store_value(39);
		assert_eq!(cell.load_value(), 39);

		radium::if_atomic!(if atomic(size) {
			let mut atom = AtomicUsize::new(0);
			atom.store_value(57);
			assert_eq!(atom.load_value(), 57);
		});
	}

	/// Unaliased `BitSlice`s are universally threadsafe, because they satisfy
	/// Rust’s unsynchronized mutation rules.
	#[test]
	fn unaliased_send_sync() {
		assert_impl_all!(BitSlice<u8, LocalBits>: Send, Sync);
		assert_impl_all!(BitSlice<u16, LocalBits>: Send, Sync);
		assert_impl_all!(BitSlice<u32, LocalBits>: Send, Sync);
		assert_impl_all!(BitSlice<usize, LocalBits>: Send, Sync);

		#[cfg(target_pointer_width = "64")]
		assert_impl_all!(BitSlice<u64, LocalBits>: Send, Sync);
	}

	#[test]
	fn cell_unsend_unsync() {
		assert_not_impl_any!(BitSlice<Cell<u8>, LocalBits>: Send, Sync);
		assert_not_impl_any!(BitSlice<Cell<u16>, LocalBits>: Send, Sync);
		assert_not_impl_any!(BitSlice<Cell<u32>, LocalBits>: Send, Sync);
		assert_not_impl_any!(BitSlice<Cell<usize>, LocalBits>: Send, Sync);

		#[cfg(target_pointer_width = "64")]
		assert_not_impl_any!(BitSlice<Cell<u64>, LocalBits>: Send, Sync);
	}

	/// In non-atomic builds, aliased `BitSlice`s become universally
	/// thread-unsafe. An `&mut BitSlice` is an `&Cell`, and `&Cell` cannot be
	/// sent across threads.
	///
	/// This test cannot be meaningfully expressed in atomic builds, because the
	/// atomicity of a `BitSafeUN` type is target-specific, and expressed in
	/// `radium` rather than in `bitvec`.
	#[test]
	#[cfg(not(feature = "atomic"))]
	fn aliased_non_atomic_unsend_unsync() {
		assert_not_impl_any!(BitSlice<BitSafeU8, LocalBits>: Send, Sync);
		assert_not_impl_any!(BitSlice<BitSafeU16, LocalBits>: Send, Sync);
		assert_not_impl_any!(BitSlice<BitSafeU32, LocalBits>: Send, Sync);
		assert_not_impl_any!(BitSlice<BitSafeUsize, LocalBits>: Send, Sync);

		#[cfg(target_pointer_width = "64")]
		assert_not_impl_any!(BitSlice<BitSafeU64, LocalBits>: Send, Sync);
	}

	#[test]
	#[cfg(feature = "atomic")]
	fn aliased_atomic_send_sync() {
		assert_impl_all!(BitSlice<AtomicU8, LocalBits>: Send, Sync);
		assert_impl_all!(BitSlice<AtomicU16, LocalBits>: Send, Sync);
		assert_impl_all!(BitSlice<AtomicU32, LocalBits>: Send, Sync);
		assert_impl_all!(BitSlice<AtomicUsize, LocalBits>: Send, Sync);

		#[cfg(target_pointer_width = "64")]
		assert_impl_all!(BitSlice<AtomicU64, LocalBits>: Send, Sync);
	}
}