libm/math/pow.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
/* origin: FreeBSD /usr/src/lib/msun/src/e_pow.c */
/*
* ====================================================
* Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
*
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
// pow(x,y) return x**y
//
// n
// Method: Let x = 2 * (1+f)
// 1. Compute and return log2(x) in two pieces:
// log2(x) = w1 + w2,
// where w1 has 53-24 = 29 bit trailing zeros.
// 2. Perform y*log2(x) = n+y' by simulating multi-precision
// arithmetic, where |y'|<=0.5.
// 3. Return x**y = 2**n*exp(y'*log2)
//
// Special cases:
// 1. (anything) ** 0 is 1
// 2. 1 ** (anything) is 1
// 3. (anything except 1) ** NAN is NAN
// 4. NAN ** (anything except 0) is NAN
// 5. +-(|x| > 1) ** +INF is +INF
// 6. +-(|x| > 1) ** -INF is +0
// 7. +-(|x| < 1) ** +INF is +0
// 8. +-(|x| < 1) ** -INF is +INF
// 9. -1 ** +-INF is 1
// 10. +0 ** (+anything except 0, NAN) is +0
// 11. -0 ** (+anything except 0, NAN, odd integer) is +0
// 12. +0 ** (-anything except 0, NAN) is +INF, raise divbyzero
// 13. -0 ** (-anything except 0, NAN, odd integer) is +INF, raise divbyzero
// 14. -0 ** (+odd integer) is -0
// 15. -0 ** (-odd integer) is -INF, raise divbyzero
// 16. +INF ** (+anything except 0,NAN) is +INF
// 17. +INF ** (-anything except 0,NAN) is +0
// 18. -INF ** (+odd integer) is -INF
// 19. -INF ** (anything) = -0 ** (-anything), (anything except odd integer)
// 20. (anything) ** 1 is (anything)
// 21. (anything) ** -1 is 1/(anything)
// 22. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
// 23. (-anything except 0 and inf) ** (non-integer) is NAN
//
// Accuracy:
// pow(x,y) returns x**y nearly rounded. In particular
// pow(integer,integer)
// always returns the correct integer provided it is
// representable.
//
// Constants :
// The hexadecimal values are the intended ones for the following
// constants. The decimal values may be used, provided that the
// compiler will convert from decimal to binary accurately enough
// to produce the hexadecimal values shown.
//
use super::{fabs, get_high_word, scalbn, sqrt, with_set_high_word, with_set_low_word};
const BP: [f64; 2] = [1.0, 1.5];
const DP_H: [f64; 2] = [0.0, 5.84962487220764160156e-01]; /* 0x3fe2b803_40000000 */
const DP_L: [f64; 2] = [0.0, 1.35003920212974897128e-08]; /* 0x3E4CFDEB, 0x43CFD006 */
const TWO53: f64 = 9007199254740992.0; /* 0x43400000_00000000 */
const HUGE: f64 = 1.0e300;
const TINY: f64 = 1.0e-300;
// poly coefs for (3/2)*(log(x)-2s-2/3*s**3:
const L1: f64 = 5.99999999999994648725e-01; /* 0x3fe33333_33333303 */
const L2: f64 = 4.28571428578550184252e-01; /* 0x3fdb6db6_db6fabff */
const L3: f64 = 3.33333329818377432918e-01; /* 0x3fd55555_518f264d */
const L4: f64 = 2.72728123808534006489e-01; /* 0x3fd17460_a91d4101 */
const L5: f64 = 2.30660745775561754067e-01; /* 0x3fcd864a_93c9db65 */
const L6: f64 = 2.06975017800338417784e-01; /* 0x3fca7e28_4a454eef */
const P1: f64 = 1.66666666666666019037e-01; /* 0x3fc55555_5555553e */
const P2: f64 = -2.77777777770155933842e-03; /* 0xbf66c16c_16bebd93 */
const P3: f64 = 6.61375632143793436117e-05; /* 0x3f11566a_af25de2c */
const P4: f64 = -1.65339022054652515390e-06; /* 0xbebbbd41_c5d26bf1 */
const P5: f64 = 4.13813679705723846039e-08; /* 0x3e663769_72bea4d0 */
const LG2: f64 = 6.93147180559945286227e-01; /* 0x3fe62e42_fefa39ef */
const LG2_H: f64 = 6.93147182464599609375e-01; /* 0x3fe62e43_00000000 */
const LG2_L: f64 = -1.90465429995776804525e-09; /* 0xbe205c61_0ca86c39 */
const OVT: f64 = 8.0085662595372944372e-017; /* -(1024-log2(ovfl+.5ulp)) */
const CP: f64 = 9.61796693925975554329e-01; /* 0x3feec709_dc3a03fd =2/(3ln2) */
const CP_H: f64 = 9.61796700954437255859e-01; /* 0x3feec709_e0000000 =(float)cp */
const CP_L: f64 = -7.02846165095275826516e-09; /* 0xbe3e2fe0_145b01f5 =tail of cp_h*/
const IVLN2: f64 = 1.44269504088896338700e+00; /* 0x3ff71547_652b82fe =1/ln2 */
const IVLN2_H: f64 = 1.44269502162933349609e+00; /* 0x3ff71547_60000000 =24b 1/ln2*/
const IVLN2_L: f64 = 1.92596299112661746887e-08; /* 0x3e54ae0b_f85ddf44 =1/ln2 tail*/
/// Returns `x` to the power of `y` (f64).
#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
pub fn pow(x: f64, y: f64) -> f64 {
let t1: f64;
let t2: f64;
let (hx, lx): (i32, u32) = ((x.to_bits() >> 32) as i32, x.to_bits() as u32);
let (hy, ly): (i32, u32) = ((y.to_bits() >> 32) as i32, y.to_bits() as u32);
let mut ix: i32 = (hx & 0x7fffffff) as i32;
let iy: i32 = (hy & 0x7fffffff) as i32;
/* x**0 = 1, even if x is NaN */
if ((iy as u32) | ly) == 0 {
return 1.0;
}
/* 1**y = 1, even if y is NaN */
if hx == 0x3ff00000 && lx == 0 {
return 1.0;
}
/* NaN if either arg is NaN */
if ix > 0x7ff00000
|| (ix == 0x7ff00000 && lx != 0)
|| iy > 0x7ff00000
|| (iy == 0x7ff00000 && ly != 0)
{
return x + y;
}
/* determine if y is an odd int when x < 0
* yisint = 0 ... y is not an integer
* yisint = 1 ... y is an odd int
* yisint = 2 ... y is an even int
*/
let mut yisint: i32 = 0;
let mut k: i32;
let mut j: i32;
if hx < 0 {
if iy >= 0x43400000 {
yisint = 2; /* even integer y */
} else if iy >= 0x3ff00000 {
k = (iy >> 20) - 0x3ff; /* exponent */
if k > 20 {
j = (ly >> (52 - k)) as i32;
if (j << (52 - k)) == (ly as i32) {
yisint = 2 - (j & 1);
}
} else if ly == 0 {
j = iy >> (20 - k);
if (j << (20 - k)) == iy {
yisint = 2 - (j & 1);
}
}
}
}
if ly == 0 {
/* special value of y */
if iy == 0x7ff00000 {
/* y is +-inf */
return if ((ix - 0x3ff00000) | (lx as i32)) == 0 {
/* (-1)**+-inf is 1 */
1.0
} else if ix >= 0x3ff00000 {
/* (|x|>1)**+-inf = inf,0 */
if hy >= 0 { y } else { 0.0 }
} else {
/* (|x|<1)**+-inf = 0,inf */
if hy >= 0 { 0.0 } else { -y }
};
}
if iy == 0x3ff00000 {
/* y is +-1 */
return if hy >= 0 { x } else { 1.0 / x };
}
if hy == 0x40000000 {
/* y is 2 */
return x * x;
}
if hy == 0x3fe00000 {
/* y is 0.5 */
if hx >= 0 {
/* x >= +0 */
return sqrt(x);
}
}
}
let mut ax: f64 = fabs(x);
if lx == 0 {
/* special value of x */
if ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000 {
/* x is +-0,+-inf,+-1 */
let mut z: f64 = ax;
if hy < 0 {
/* z = (1/|x|) */
z = 1.0 / z;
}
if hx < 0 {
if ((ix - 0x3ff00000) | yisint) == 0 {
z = (z - z) / (z - z); /* (-1)**non-int is NaN */
} else if yisint == 1 {
z = -z; /* (x<0)**odd = -(|x|**odd) */
}
}
return z;
}
}
let mut s: f64 = 1.0; /* sign of result */
if hx < 0 {
if yisint == 0 {
/* (x<0)**(non-int) is NaN */
return (x - x) / (x - x);
}
if yisint == 1 {
/* (x<0)**(odd int) */
s = -1.0;
}
}
/* |y| is HUGE */
if iy > 0x41e00000 {
/* if |y| > 2**31 */
if iy > 0x43f00000 {
/* if |y| > 2**64, must o/uflow */
if ix <= 0x3fefffff {
return if hy < 0 { HUGE * HUGE } else { TINY * TINY };
}
if ix >= 0x3ff00000 {
return if hy > 0 { HUGE * HUGE } else { TINY * TINY };
}
}
/* over/underflow if x is not close to one */
if ix < 0x3fefffff {
return if hy < 0 { s * HUGE * HUGE } else { s * TINY * TINY };
}
if ix > 0x3ff00000 {
return if hy > 0 { s * HUGE * HUGE } else { s * TINY * TINY };
}
/* now |1-x| is TINY <= 2**-20, suffice to compute
log(x) by x-x^2/2+x^3/3-x^4/4 */
let t: f64 = ax - 1.0; /* t has 20 trailing zeros */
let w: f64 = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25));
let u: f64 = IVLN2_H * t; /* ivln2_h has 21 sig. bits */
let v: f64 = t * IVLN2_L - w * IVLN2;
t1 = with_set_low_word(u + v, 0);
t2 = v - (t1 - u);
} else {
// double ss,s2,s_h,s_l,t_h,t_l;
let mut n: i32 = 0;
if ix < 0x00100000 {
/* take care subnormal number */
ax *= TWO53;
n -= 53;
ix = get_high_word(ax) as i32;
}
n += (ix >> 20) - 0x3ff;
j = ix & 0x000fffff;
/* determine interval */
let k: i32;
ix = j | 0x3ff00000; /* normalize ix */
if j <= 0x3988E {
/* |x|<sqrt(3/2) */
k = 0;
} else if j < 0xBB67A {
/* |x|<sqrt(3) */
k = 1;
} else {
k = 0;
n += 1;
ix -= 0x00100000;
}
ax = with_set_high_word(ax, ix as u32);
/* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
let u: f64 = ax - i!(BP, k as usize); /* bp[0]=1.0, bp[1]=1.5 */
let v: f64 = 1.0 / (ax + i!(BP, k as usize));
let ss: f64 = u * v;
let s_h = with_set_low_word(ss, 0);
/* t_h=ax+bp[k] High */
let t_h: f64 = with_set_high_word(
0.0,
((ix as u32 >> 1) | 0x20000000) + 0x00080000 + ((k as u32) << 18),
);
let t_l: f64 = ax - (t_h - i!(BP, k as usize));
let s_l: f64 = v * ((u - s_h * t_h) - s_h * t_l);
/* compute log(ax) */
let s2: f64 = ss * ss;
let mut r: f64 = s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));
r += s_l * (s_h + ss);
let s2: f64 = s_h * s_h;
let t_h: f64 = with_set_low_word(3.0 + s2 + r, 0);
let t_l: f64 = r - ((t_h - 3.0) - s2);
/* u+v = ss*(1+...) */
let u: f64 = s_h * t_h;
let v: f64 = s_l * t_h + t_l * ss;
/* 2/(3log2)*(ss+...) */
let p_h: f64 = with_set_low_word(u + v, 0);
let p_l = v - (p_h - u);
let z_h: f64 = CP_H * p_h; /* cp_h+cp_l = 2/(3*log2) */
let z_l: f64 = CP_L * p_h + p_l * CP + i!(DP_L, k as usize);
/* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
let t: f64 = n as f64;
t1 = with_set_low_word(((z_h + z_l) + i!(DP_H, k as usize)) + t, 0);
t2 = z_l - (((t1 - t) - i!(DP_H, k as usize)) - z_h);
}
/* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
let y1: f64 = with_set_low_word(y, 0);
let p_l: f64 = (y - y1) * t1 + y * t2;
let mut p_h: f64 = y1 * t1;
let z: f64 = p_l + p_h;
let mut j: i32 = (z.to_bits() >> 32) as i32;
let i: i32 = z.to_bits() as i32;
// let (j, i): (i32, i32) = ((z.to_bits() >> 32) as i32, z.to_bits() as i32);
if j >= 0x40900000 {
/* z >= 1024 */
if (j - 0x40900000) | i != 0 {
/* if z > 1024 */
return s * HUGE * HUGE; /* overflow */
}
if p_l + OVT > z - p_h {
return s * HUGE * HUGE; /* overflow */
}
} else if (j & 0x7fffffff) >= 0x4090cc00 {
/* z <= -1075 */
// FIXME: instead of abs(j) use unsigned j
if (((j as u32) - 0xc090cc00) | (i as u32)) != 0 {
/* z < -1075 */
return s * TINY * TINY; /* underflow */
}
if p_l <= z - p_h {
return s * TINY * TINY; /* underflow */
}
}
/* compute 2**(p_h+p_l) */
let i: i32 = j & (0x7fffffff as i32);
k = (i >> 20) - 0x3ff;
let mut n: i32 = 0;
if i > 0x3fe00000 {
/* if |z| > 0.5, set n = [z+0.5] */
n = j + (0x00100000 >> (k + 1));
k = ((n & 0x7fffffff) >> 20) - 0x3ff; /* new k for n */
let t: f64 = with_set_high_word(0.0, (n & !(0x000fffff >> k)) as u32);
n = ((n & 0x000fffff) | 0x00100000) >> (20 - k);
if j < 0 {
n = -n;
}
p_h -= t;
}
let t: f64 = with_set_low_word(p_l + p_h, 0);
let u: f64 = t * LG2_H;
let v: f64 = (p_l - (t - p_h)) * LG2 + t * LG2_L;
let mut z: f64 = u + v;
let w: f64 = v - (z - u);
let t: f64 = z * z;
let t1: f64 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
let r: f64 = (z * t1) / (t1 - 2.0) - (w + z * w);
z = 1.0 - (r - z);
j = get_high_word(z) as i32;
j += n << 20;
if (j >> 20) <= 0 {
/* subnormal output */
z = scalbn(z, n);
} else {
z = with_set_high_word(z, j as u32);
}
s * z
}
#[cfg(test)]
mod tests {
extern crate core;
use self::core::f64::consts::{E, PI};
use self::core::f64::{EPSILON, INFINITY, MAX, MIN, MIN_POSITIVE, NAN, NEG_INFINITY};
use super::pow;
const POS_ZERO: &[f64] = &[0.0];
const NEG_ZERO: &[f64] = &[-0.0];
const POS_ONE: &[f64] = &[1.0];
const NEG_ONE: &[f64] = &[-1.0];
const POS_FLOATS: &[f64] = &[99.0 / 70.0, E, PI];
const NEG_FLOATS: &[f64] = &[-99.0 / 70.0, -E, -PI];
const POS_SMALL_FLOATS: &[f64] = &[(1.0 / 2.0), MIN_POSITIVE, EPSILON];
const NEG_SMALL_FLOATS: &[f64] = &[-(1.0 / 2.0), -MIN_POSITIVE, -EPSILON];
const POS_EVENS: &[f64] = &[2.0, 6.0, 8.0, 10.0, 22.0, 100.0, MAX];
const NEG_EVENS: &[f64] = &[MIN, -100.0, -22.0, -10.0, -8.0, -6.0, -2.0];
const POS_ODDS: &[f64] = &[3.0, 7.0];
const NEG_ODDS: &[f64] = &[-7.0, -3.0];
const NANS: &[f64] = &[NAN];
const POS_INF: &[f64] = &[INFINITY];
const NEG_INF: &[f64] = &[NEG_INFINITY];
const ALL: &[&[f64]] = &[
POS_ZERO,
NEG_ZERO,
NANS,
NEG_SMALL_FLOATS,
POS_SMALL_FLOATS,
NEG_FLOATS,
POS_FLOATS,
NEG_EVENS,
POS_EVENS,
NEG_ODDS,
POS_ODDS,
NEG_INF,
POS_INF,
NEG_ONE,
POS_ONE,
];
const POS: &[&[f64]] = &[POS_ZERO, POS_ODDS, POS_ONE, POS_FLOATS, POS_EVENS, POS_INF];
const NEG: &[&[f64]] = &[NEG_ZERO, NEG_ODDS, NEG_ONE, NEG_FLOATS, NEG_EVENS, NEG_INF];
fn pow_test(base: f64, exponent: f64, expected: f64) {
let res = pow(base, exponent);
assert!(
if expected.is_nan() { res.is_nan() } else { pow(base, exponent) == expected },
"{} ** {} was {} instead of {}",
base,
exponent,
res,
expected
);
}
fn test_sets_as_base(sets: &[&[f64]], exponent: f64, expected: f64) {
sets.iter().for_each(|s| s.iter().for_each(|val| pow_test(*val, exponent, expected)));
}
fn test_sets_as_exponent(base: f64, sets: &[&[f64]], expected: f64) {
sets.iter().for_each(|s| s.iter().for_each(|val| pow_test(base, *val, expected)));
}
fn test_sets(sets: &[&[f64]], computed: &dyn Fn(f64) -> f64, expected: &dyn Fn(f64) -> f64) {
sets.iter().for_each(|s| {
s.iter().for_each(|val| {
let exp = expected(*val);
let res = computed(*val);
#[cfg(all(target_arch = "x86", not(target_feature = "sse2")))]
let exp = force_eval!(exp);
#[cfg(all(target_arch = "x86", not(target_feature = "sse2")))]
let res = force_eval!(res);
assert!(
if exp.is_nan() { res.is_nan() } else { exp == res },
"test for {} was {} instead of {}",
val,
res,
exp
);
})
});
}
#[test]
fn zero_as_exponent() {
test_sets_as_base(ALL, 0.0, 1.0);
test_sets_as_base(ALL, -0.0, 1.0);
}
#[test]
fn one_as_base() {
test_sets_as_exponent(1.0, ALL, 1.0);
}
#[test]
fn nan_inputs() {
// NAN as the base:
// (NAN ^ anything *but 0* should be NAN)
test_sets_as_exponent(NAN, &ALL[2..], NAN);
// NAN as the exponent:
// (anything *but 1* ^ NAN should be NAN)
test_sets_as_base(&ALL[..(ALL.len() - 2)], NAN, NAN);
}
#[test]
fn infinity_as_base() {
// Positive Infinity as the base:
// (+Infinity ^ positive anything but 0 and NAN should be +Infinity)
test_sets_as_exponent(INFINITY, &POS[1..], INFINITY);
// (+Infinity ^ negative anything except 0 and NAN should be 0.0)
test_sets_as_exponent(INFINITY, &NEG[1..], 0.0);
// Negative Infinity as the base:
// (-Infinity ^ positive odd ints should be -Infinity)
test_sets_as_exponent(NEG_INFINITY, &[POS_ODDS], NEG_INFINITY);
// (-Infinity ^ anything but odd ints should be == -0 ^ (-anything))
// We can lump in pos/neg odd ints here because they don't seem to
// cause panics (div by zero) in release mode (I think).
test_sets(ALL, &|v: f64| pow(NEG_INFINITY, v), &|v: f64| pow(-0.0, -v));
}
#[test]
fn infinity_as_exponent() {
// Positive/Negative base greater than 1:
// (pos/neg > 1 ^ Infinity should be Infinity - note this excludes NAN as the base)
test_sets_as_base(&ALL[5..(ALL.len() - 2)], INFINITY, INFINITY);
// (pos/neg > 1 ^ -Infinity should be 0.0)
test_sets_as_base(&ALL[5..ALL.len() - 2], NEG_INFINITY, 0.0);
// Positive/Negative base less than 1:
let base_below_one = &[POS_ZERO, NEG_ZERO, NEG_SMALL_FLOATS, POS_SMALL_FLOATS];
// (pos/neg < 1 ^ Infinity should be 0.0 - this also excludes NAN as the base)
test_sets_as_base(base_below_one, INFINITY, 0.0);
// (pos/neg < 1 ^ -Infinity should be Infinity)
test_sets_as_base(base_below_one, NEG_INFINITY, INFINITY);
// Positive/Negative 1 as the base:
// (pos/neg 1 ^ Infinity should be 1)
test_sets_as_base(&[NEG_ONE, POS_ONE], INFINITY, 1.0);
// (pos/neg 1 ^ -Infinity should be 1)
test_sets_as_base(&[NEG_ONE, POS_ONE], NEG_INFINITY, 1.0);
}
#[test]
fn zero_as_base() {
// Positive Zero as the base:
// (+0 ^ anything positive but 0 and NAN should be +0)
test_sets_as_exponent(0.0, &POS[1..], 0.0);
// (+0 ^ anything negative but 0 and NAN should be Infinity)
// (this should panic because we're dividing by zero)
test_sets_as_exponent(0.0, &NEG[1..], INFINITY);
// Negative Zero as the base:
// (-0 ^ anything positive but 0, NAN, and odd ints should be +0)
test_sets_as_exponent(-0.0, &POS[3..], 0.0);
// (-0 ^ anything negative but 0, NAN, and odd ints should be Infinity)
// (should panic because of divide by zero)
test_sets_as_exponent(-0.0, &NEG[3..], INFINITY);
// (-0 ^ positive odd ints should be -0)
test_sets_as_exponent(-0.0, &[POS_ODDS], -0.0);
// (-0 ^ negative odd ints should be -Infinity)
// (should panic because of divide by zero)
test_sets_as_exponent(-0.0, &[NEG_ODDS], NEG_INFINITY);
}
#[test]
fn special_cases() {
// One as the exponent:
// (anything ^ 1 should be anything - i.e. the base)
test_sets(ALL, &|v: f64| pow(v, 1.0), &|v: f64| v);
// Negative One as the exponent:
// (anything ^ -1 should be 1/anything)
test_sets(ALL, &|v: f64| pow(v, -1.0), &|v: f64| 1.0 / v);
// Factoring -1 out:
// (negative anything ^ integer should be (-1 ^ integer) * (positive anything ^ integer))
(&[POS_ZERO, NEG_ZERO, POS_ONE, NEG_ONE, POS_EVENS, NEG_EVENS]).iter().for_each(
|int_set| {
int_set.iter().for_each(|int| {
test_sets(ALL, &|v: f64| pow(-v, *int), &|v: f64| {
pow(-1.0, *int) * pow(v, *int)
});
})
},
);
// Negative base (imaginary results):
// (-anything except 0 and Infinity ^ non-integer should be NAN)
(&NEG[1..(NEG.len() - 1)]).iter().for_each(|set| {
set.iter().for_each(|val| {
test_sets(&ALL[3..7], &|v: f64| pow(*val, v), &|_| NAN);
})
});
}
#[test]
fn normal_cases() {
assert_eq!(pow(2.0, 20.0), (1 << 20) as f64);
assert_eq!(pow(-1.0, 9.0), -1.0);
assert!(pow(-1.0, 2.2).is_nan());
assert!(pow(-1.0, -1.14).is_nan());
}
}