tokio/net/windows/named_pipe.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
//! Tokio support for [Windows named pipes].
//!
//! [Windows named pipes]: https://docs.microsoft.com/en-us/windows/win32/ipc/named-pipes
use std::ffi::c_void;
use std::ffi::OsStr;
use std::io::{self, Read, Write};
use std::pin::Pin;
use std::ptr;
use std::task::{Context, Poll};
use crate::io::{AsyncRead, AsyncWrite, Interest, PollEvented, ReadBuf, Ready};
use crate::os::windows::io::{AsHandle, AsRawHandle, BorrowedHandle, FromRawHandle, RawHandle};
cfg_io_util! {
use bytes::BufMut;
}
// Hide imports which are not used when generating documentation.
#[cfg(windows)]
mod doc {
pub(super) use crate::os::windows::ffi::OsStrExt;
pub(super) mod windows_sys {
pub(crate) use windows_sys::{
Win32::Foundation::*, Win32::Storage::FileSystem::*, Win32::System::Pipes::*,
Win32::System::SystemServices::*,
};
}
pub(super) use mio::windows as mio_windows;
}
// NB: none of these shows up in public API, so don't document them.
#[cfg(not(windows))]
mod doc {
pub(super) mod mio_windows {
pub type NamedPipe = crate::doc::NotDefinedHere;
}
}
use self::doc::*;
/// A [Windows named pipe] server.
///
/// Accepting client connections involves creating a server with
/// [`ServerOptions::create`] and waiting for clients to connect using
/// [`NamedPipeServer::connect`].
///
/// To avoid having clients sporadically fail with
/// [`std::io::ErrorKind::NotFound`] when they connect to a server, we must
/// ensure that at least one server instance is available at all times. This
/// means that the typical listen loop for a server is a bit involved, because
/// we have to ensure that we never drop a server accidentally while a client
/// might connect.
///
/// So a correctly implemented server looks like this:
///
/// ```no_run
/// use std::io;
/// use tokio::net::windows::named_pipe::ServerOptions;
///
/// const PIPE_NAME: &str = r"\\.\pipe\named-pipe-idiomatic-server";
///
/// # #[tokio::main] async fn main() -> std::io::Result<()> {
/// // The first server needs to be constructed early so that clients can
/// // be correctly connected. Otherwise calling .wait will cause the client to
/// // error.
/// //
/// // Here we also make use of `first_pipe_instance`, which will ensure that
/// // there are no other servers up and running already.
/// let mut server = ServerOptions::new()
/// .first_pipe_instance(true)
/// .create(PIPE_NAME)?;
///
/// // Spawn the server loop.
/// let server = tokio::spawn(async move {
/// loop {
/// // Wait for a client to connect.
/// server.connect().await?;
/// let connected_client = server;
///
/// // Construct the next server to be connected before sending the one
/// // we already have of onto a task. This ensures that the server
/// // isn't closed (after it's done in the task) before a new one is
/// // available. Otherwise the client might error with
/// // `io::ErrorKind::NotFound`.
/// server = ServerOptions::new().create(PIPE_NAME)?;
///
/// let client = tokio::spawn(async move {
/// /* use the connected client */
/// # Ok::<_, std::io::Error>(())
/// });
/// # if true { break } // needed for type inference to work
/// }
///
/// Ok::<_, io::Error>(())
/// });
///
/// /* do something else not server related here */
/// # Ok(()) }
/// ```
///
/// [Windows named pipe]: https://docs.microsoft.com/en-us/windows/win32/ipc/named-pipes
#[derive(Debug)]
pub struct NamedPipeServer {
io: PollEvented<mio_windows::NamedPipe>,
}
impl NamedPipeServer {
/// Constructs a new named pipe server from the specified raw handle.
///
/// This function will consume ownership of the handle given, passing
/// responsibility for closing the handle to the returned object.
///
/// This function is also unsafe as the primitives currently returned have
/// the contract that they are the sole owner of the file descriptor they
/// are wrapping. Usage of this function could accidentally allow violating
/// this contract which can cause memory unsafety in code that relies on it
/// being true.
///
/// # Errors
///
/// This errors if called outside of a [Tokio Runtime], or in a runtime that
/// has not [enabled I/O], or if any OS-specific I/O errors occur.
///
/// [Tokio Runtime]: crate::runtime::Runtime
/// [enabled I/O]: crate::runtime::Builder::enable_io
pub unsafe fn from_raw_handle(handle: RawHandle) -> io::Result<Self> {
let named_pipe = mio_windows::NamedPipe::from_raw_handle(handle);
Ok(Self {
io: PollEvented::new(named_pipe)?,
})
}
/// Retrieves information about the named pipe the server is associated
/// with.
///
/// ```no_run
/// use tokio::net::windows::named_pipe::{PipeEnd, PipeMode, ServerOptions};
///
/// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-server-info";
///
/// # #[tokio::main] async fn main() -> std::io::Result<()> {
/// let server = ServerOptions::new()
/// .pipe_mode(PipeMode::Message)
/// .max_instances(5)
/// .create(PIPE_NAME)?;
///
/// let server_info = server.info()?;
///
/// assert_eq!(server_info.end, PipeEnd::Server);
/// assert_eq!(server_info.mode, PipeMode::Message);
/// assert_eq!(server_info.max_instances, 5);
/// # Ok(()) }
/// ```
pub fn info(&self) -> io::Result<PipeInfo> {
// Safety: we're ensuring the lifetime of the named pipe.
unsafe { named_pipe_info(self.io.as_raw_handle()) }
}
/// Enables a named pipe server process to wait for a client process to
/// connect to an instance of a named pipe. A client process connects by
/// creating a named pipe with the same name.
///
/// This corresponds to the [`ConnectNamedPipe`] system call.
///
/// # Cancel safety
///
/// This method is cancellation safe in the sense that if it is used as the
/// event in a [`select!`](crate::select) statement and some other branch
/// completes first, then no connection events have been lost.
///
/// [`ConnectNamedPipe`]: https://docs.microsoft.com/en-us/windows/win32/api/namedpipeapi/nf-namedpipeapi-connectnamedpipe
///
/// # Example
///
/// ```no_run
/// use tokio::net::windows::named_pipe::ServerOptions;
///
/// const PIPE_NAME: &str = r"\\.\pipe\mynamedpipe";
///
/// # #[tokio::main] async fn main() -> std::io::Result<()> {
/// let pipe = ServerOptions::new().create(PIPE_NAME)?;
///
/// // Wait for a client to connect.
/// pipe.connect().await?;
///
/// // Use the connected client...
/// # Ok(()) }
/// ```
pub async fn connect(&self) -> io::Result<()> {
match self.io.connect() {
Err(e) if e.kind() == io::ErrorKind::WouldBlock => {
self.io
.registration()
.async_io(Interest::WRITABLE, || self.io.connect())
.await
}
x => x,
}
}
/// Disconnects the server end of a named pipe instance from a client
/// process.
///
/// ```
/// use tokio::io::AsyncWriteExt;
/// use tokio::net::windows::named_pipe::{ClientOptions, ServerOptions};
/// use windows_sys::Win32::Foundation::ERROR_PIPE_NOT_CONNECTED;
///
/// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-disconnect";
///
/// # #[tokio::main] async fn main() -> std::io::Result<()> {
/// let server = ServerOptions::new()
/// .create(PIPE_NAME)?;
///
/// let mut client = ClientOptions::new()
/// .open(PIPE_NAME)?;
///
/// // Wait for a client to become connected.
/// server.connect().await?;
///
/// // Forcibly disconnect the client.
/// server.disconnect()?;
///
/// // Write fails with an OS-specific error after client has been
/// // disconnected.
/// let e = client.write(b"ping").await.unwrap_err();
/// assert_eq!(e.raw_os_error(), Some(ERROR_PIPE_NOT_CONNECTED as i32));
/// # Ok(()) }
/// ```
pub fn disconnect(&self) -> io::Result<()> {
self.io.disconnect()
}
/// Waits for any of the requested ready states.
///
/// This function is usually paired with `try_read()` or `try_write()`. It
/// can be used to concurrently read / write to the same pipe on a single
/// task without splitting the pipe.
///
/// The function may complete without the pipe being ready. This is a
/// false-positive and attempting an operation will return with
/// `io::ErrorKind::WouldBlock`. The function can also return with an empty
/// [`Ready`] set, so you should always check the returned value and possibly
/// wait again if the requested states are not set.
///
/// # Examples
///
/// Concurrently read and write to the pipe on the same task without
/// splitting.
///
/// ```no_run
/// use tokio::io::Interest;
/// use tokio::net::windows::named_pipe;
/// use std::error::Error;
/// use std::io;
///
/// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-server-ready";
///
/// #[tokio::main]
/// async fn main() -> Result<(), Box<dyn Error>> {
/// let server = named_pipe::ServerOptions::new()
/// .create(PIPE_NAME)?;
///
/// loop {
/// let ready = server.ready(Interest::READABLE | Interest::WRITABLE).await?;
///
/// if ready.is_readable() {
/// let mut data = vec![0; 1024];
/// // Try to read data, this may still fail with `WouldBlock`
/// // if the readiness event is a false positive.
/// match server.try_read(&mut data) {
/// Ok(n) => {
/// println!("read {} bytes", n);
/// }
/// Err(e) if e.kind() == io::ErrorKind::WouldBlock => {
/// continue;
/// }
/// Err(e) => {
/// return Err(e.into());
/// }
/// }
/// }
///
/// if ready.is_writable() {
/// // Try to write data, this may still fail with `WouldBlock`
/// // if the readiness event is a false positive.
/// match server.try_write(b"hello world") {
/// Ok(n) => {
/// println!("write {} bytes", n);
/// }
/// Err(e) if e.kind() == io::ErrorKind::WouldBlock => {
/// continue;
/// }
/// Err(e) => {
/// return Err(e.into());
/// }
/// }
/// }
/// }
/// }
/// ```
pub async fn ready(&self, interest: Interest) -> io::Result<Ready> {
let event = self.io.registration().readiness(interest).await?;
Ok(event.ready)
}
/// Waits for the pipe to become readable.
///
/// This function is equivalent to `ready(Interest::READABLE)` and is usually
/// paired with `try_read()`.
///
/// # Examples
///
/// ```no_run
/// use tokio::net::windows::named_pipe;
/// use std::error::Error;
/// use std::io;
///
/// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-server-readable";
///
/// #[tokio::main]
/// async fn main() -> Result<(), Box<dyn Error>> {
/// let server = named_pipe::ServerOptions::new()
/// .create(PIPE_NAME)?;
///
/// let mut msg = vec![0; 1024];
///
/// loop {
/// // Wait for the pipe to be readable
/// server.readable().await?;
///
/// // Try to read data, this may still fail with `WouldBlock`
/// // if the readiness event is a false positive.
/// match server.try_read(&mut msg) {
/// Ok(n) => {
/// msg.truncate(n);
/// break;
/// }
/// Err(e) if e.kind() == io::ErrorKind::WouldBlock => {
/// continue;
/// }
/// Err(e) => {
/// return Err(e.into());
/// }
/// }
/// }
///
/// println!("GOT = {:?}", msg);
/// Ok(())
/// }
/// ```
pub async fn readable(&self) -> io::Result<()> {
self.ready(Interest::READABLE).await?;
Ok(())
}
/// Polls for read readiness.
///
/// If the pipe is not currently ready for reading, this method will
/// store a clone of the `Waker` from the provided `Context`. When the pipe
/// becomes ready for reading, `Waker::wake` will be called on the waker.
///
/// Note that on multiple calls to `poll_read_ready` or `poll_read`, only
/// the `Waker` from the `Context` passed to the most recent call is
/// scheduled to receive a wakeup. (However, `poll_write_ready` retains a
/// second, independent waker.)
///
/// This function is intended for cases where creating and pinning a future
/// via [`readable`] is not feasible. Where possible, using [`readable`] is
/// preferred, as this supports polling from multiple tasks at once.
///
/// # Return value
///
/// The function returns:
///
/// * `Poll::Pending` if the pipe is not ready for reading.
/// * `Poll::Ready(Ok(()))` if the pipe is ready for reading.
/// * `Poll::Ready(Err(e))` if an error is encountered.
///
/// # Errors
///
/// This function may encounter any standard I/O error except `WouldBlock`.
///
/// [`readable`]: method@Self::readable
pub fn poll_read_ready(&self, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
self.io.registration().poll_read_ready(cx).map_ok(|_| ())
}
/// Tries to read data from the pipe into the provided buffer, returning how
/// many bytes were read.
///
/// Receives any pending data from the pipe but does not wait for new data
/// to arrive. On success, returns the number of bytes read. Because
/// `try_read()` is non-blocking, the buffer does not have to be stored by
/// the async task and can exist entirely on the stack.
///
/// Usually, [`readable()`] or [`ready()`] is used with this function.
///
/// [`readable()`]: NamedPipeServer::readable()
/// [`ready()`]: NamedPipeServer::ready()
///
/// # Return
///
/// If data is successfully read, `Ok(n)` is returned, where `n` is the
/// number of bytes read. If `n` is `0`, then it can indicate one of two scenarios:
///
/// 1. The pipe's read half is closed and will no longer yield data.
/// 2. The specified buffer was 0 bytes in length.
///
/// If the pipe is not ready to read data,
/// `Err(io::ErrorKind::WouldBlock)` is returned.
///
/// # Examples
///
/// ```no_run
/// use tokio::net::windows::named_pipe;
/// use std::error::Error;
/// use std::io;
///
/// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-server-try-read";
///
/// #[tokio::main]
/// async fn main() -> Result<(), Box<dyn Error>> {
/// let server = named_pipe::ServerOptions::new()
/// .create(PIPE_NAME)?;
///
/// loop {
/// // Wait for the pipe to be readable
/// server.readable().await?;
///
/// // Creating the buffer **after** the `await` prevents it from
/// // being stored in the async task.
/// let mut buf = [0; 4096];
///
/// // Try to read data, this may still fail with `WouldBlock`
/// // if the readiness event is a false positive.
/// match server.try_read(&mut buf) {
/// Ok(0) => break,
/// Ok(n) => {
/// println!("read {} bytes", n);
/// }
/// Err(e) if e.kind() == io::ErrorKind::WouldBlock => {
/// continue;
/// }
/// Err(e) => {
/// return Err(e.into());
/// }
/// }
/// }
///
/// Ok(())
/// }
/// ```
pub fn try_read(&self, buf: &mut [u8]) -> io::Result<usize> {
self.io
.registration()
.try_io(Interest::READABLE, || (&*self.io).read(buf))
}
/// Tries to read data from the pipe into the provided buffers, returning
/// how many bytes were read.
///
/// Data is copied to fill each buffer in order, with the final buffer
/// written to possibly being only partially filled. This method behaves
/// equivalently to a single call to [`try_read()`] with concatenated
/// buffers.
///
/// Receives any pending data from the pipe but does not wait for new data
/// to arrive. On success, returns the number of bytes read. Because
/// `try_read_vectored()` is non-blocking, the buffer does not have to be
/// stored by the async task and can exist entirely on the stack.
///
/// Usually, [`readable()`] or [`ready()`] is used with this function.
///
/// [`try_read()`]: NamedPipeServer::try_read()
/// [`readable()`]: NamedPipeServer::readable()
/// [`ready()`]: NamedPipeServer::ready()
///
/// # Return
///
/// If data is successfully read, `Ok(n)` is returned, where `n` is the
/// number of bytes read. `Ok(0)` indicates the pipe's read half is closed
/// and will no longer yield data. If the pipe is not ready to read data
/// `Err(io::ErrorKind::WouldBlock)` is returned.
///
/// # Examples
///
/// ```no_run
/// use tokio::net::windows::named_pipe;
/// use std::error::Error;
/// use std::io::{self, IoSliceMut};
///
/// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-server-try-read-vectored";
///
/// #[tokio::main]
/// async fn main() -> Result<(), Box<dyn Error>> {
/// let server = named_pipe::ServerOptions::new()
/// .create(PIPE_NAME)?;
///
/// loop {
/// // Wait for the pipe to be readable
/// server.readable().await?;
///
/// // Creating the buffer **after** the `await` prevents it from
/// // being stored in the async task.
/// let mut buf_a = [0; 512];
/// let mut buf_b = [0; 1024];
/// let mut bufs = [
/// IoSliceMut::new(&mut buf_a),
/// IoSliceMut::new(&mut buf_b),
/// ];
///
/// // Try to read data, this may still fail with `WouldBlock`
/// // if the readiness event is a false positive.
/// match server.try_read_vectored(&mut bufs) {
/// Ok(0) => break,
/// Ok(n) => {
/// println!("read {} bytes", n);
/// }
/// Err(e) if e.kind() == io::ErrorKind::WouldBlock => {
/// continue;
/// }
/// Err(e) => {
/// return Err(e.into());
/// }
/// }
/// }
///
/// Ok(())
/// }
/// ```
pub fn try_read_vectored(&self, bufs: &mut [io::IoSliceMut<'_>]) -> io::Result<usize> {
self.io
.registration()
.try_io(Interest::READABLE, || (&*self.io).read_vectored(bufs))
}
cfg_io_util! {
/// Tries to read data from the stream into the provided buffer, advancing the
/// buffer's internal cursor, returning how many bytes were read.
///
/// Receives any pending data from the pipe but does not wait for new data
/// to arrive. On success, returns the number of bytes read. Because
/// `try_read_buf()` is non-blocking, the buffer does not have to be stored by
/// the async task and can exist entirely on the stack.
///
/// Usually, [`readable()`] or [`ready()`] is used with this function.
///
/// [`readable()`]: NamedPipeServer::readable()
/// [`ready()`]: NamedPipeServer::ready()
///
/// # Return
///
/// If data is successfully read, `Ok(n)` is returned, where `n` is the
/// number of bytes read. `Ok(0)` indicates the stream's read half is closed
/// and will no longer yield data. If the stream is not ready to read data
/// `Err(io::ErrorKind::WouldBlock)` is returned.
///
/// # Examples
///
/// ```no_run
/// use tokio::net::windows::named_pipe;
/// use std::error::Error;
/// use std::io;
///
/// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-client-readable";
///
/// #[tokio::main]
/// async fn main() -> Result<(), Box<dyn Error>> {
/// let server = named_pipe::ServerOptions::new().create(PIPE_NAME)?;
///
/// loop {
/// // Wait for the pipe to be readable
/// server.readable().await?;
///
/// let mut buf = Vec::with_capacity(4096);
///
/// // Try to read data, this may still fail with `WouldBlock`
/// // if the readiness event is a false positive.
/// match server.try_read_buf(&mut buf) {
/// Ok(0) => break,
/// Ok(n) => {
/// println!("read {} bytes", n);
/// }
/// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
/// continue;
/// }
/// Err(e) => {
/// return Err(e.into());
/// }
/// }
/// }
///
/// Ok(())
/// }
/// ```
pub fn try_read_buf<B: BufMut>(&self, buf: &mut B) -> io::Result<usize> {
self.io.registration().try_io(Interest::READABLE, || {
use std::io::Read;
let dst = buf.chunk_mut();
let dst =
unsafe { &mut *(dst as *mut _ as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]) };
// Safety: We trust `NamedPipeServer::read` to have filled up `n` bytes in the
// buffer.
let n = (&*self.io).read(dst)?;
unsafe {
buf.advance_mut(n);
}
Ok(n)
})
}
}
/// Waits for the pipe to become writable.
///
/// This function is equivalent to `ready(Interest::WRITABLE)` and is usually
/// paired with `try_write()`.
///
/// # Examples
///
/// ```no_run
/// use tokio::net::windows::named_pipe;
/// use std::error::Error;
/// use std::io;
///
/// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-server-writable";
///
/// #[tokio::main]
/// async fn main() -> Result<(), Box<dyn Error>> {
/// let server = named_pipe::ServerOptions::new()
/// .create(PIPE_NAME)?;
///
/// loop {
/// // Wait for the pipe to be writable
/// server.writable().await?;
///
/// // Try to write data, this may still fail with `WouldBlock`
/// // if the readiness event is a false positive.
/// match server.try_write(b"hello world") {
/// Ok(n) => {
/// break;
/// }
/// Err(e) if e.kind() == io::ErrorKind::WouldBlock => {
/// continue;
/// }
/// Err(e) => {
/// return Err(e.into());
/// }
/// }
/// }
///
/// Ok(())
/// }
/// ```
pub async fn writable(&self) -> io::Result<()> {
self.ready(Interest::WRITABLE).await?;
Ok(())
}
/// Polls for write readiness.
///
/// If the pipe is not currently ready for writing, this method will
/// store a clone of the `Waker` from the provided `Context`. When the pipe
/// becomes ready for writing, `Waker::wake` will be called on the waker.
///
/// Note that on multiple calls to `poll_write_ready` or `poll_write`, only
/// the `Waker` from the `Context` passed to the most recent call is
/// scheduled to receive a wakeup. (However, `poll_read_ready` retains a
/// second, independent waker.)
///
/// This function is intended for cases where creating and pinning a future
/// via [`writable`] is not feasible. Where possible, using [`writable`] is
/// preferred, as this supports polling from multiple tasks at once.
///
/// # Return value
///
/// The function returns:
///
/// * `Poll::Pending` if the pipe is not ready for writing.
/// * `Poll::Ready(Ok(()))` if the pipe is ready for writing.
/// * `Poll::Ready(Err(e))` if an error is encountered.
///
/// # Errors
///
/// This function may encounter any standard I/O error except `WouldBlock`.
///
/// [`writable`]: method@Self::writable
pub fn poll_write_ready(&self, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
self.io.registration().poll_write_ready(cx).map_ok(|_| ())
}
/// Tries to write a buffer to the pipe, returning how many bytes were
/// written.
///
/// The function will attempt to write the entire contents of `buf`, but
/// only part of the buffer may be written.
///
/// This function is usually paired with `writable()`.
///
/// # Return
///
/// If data is successfully written, `Ok(n)` is returned, where `n` is the
/// number of bytes written. If the pipe is not ready to write data,
/// `Err(io::ErrorKind::WouldBlock)` is returned.
///
/// # Examples
///
/// ```no_run
/// use tokio::net::windows::named_pipe;
/// use std::error::Error;
/// use std::io;
///
/// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-server-try-write";
///
/// #[tokio::main]
/// async fn main() -> Result<(), Box<dyn Error>> {
/// let server = named_pipe::ServerOptions::new()
/// .create(PIPE_NAME)?;
///
/// loop {
/// // Wait for the pipe to be writable
/// server.writable().await?;
///
/// // Try to write data, this may still fail with `WouldBlock`
/// // if the readiness event is a false positive.
/// match server.try_write(b"hello world") {
/// Ok(n) => {
/// break;
/// }
/// Err(e) if e.kind() == io::ErrorKind::WouldBlock => {
/// continue;
/// }
/// Err(e) => {
/// return Err(e.into());
/// }
/// }
/// }
///
/// Ok(())
/// }
/// ```
pub fn try_write(&self, buf: &[u8]) -> io::Result<usize> {
self.io
.registration()
.try_io(Interest::WRITABLE, || (&*self.io).write(buf))
}
/// Tries to write several buffers to the pipe, returning how many bytes
/// were written.
///
/// Data is written from each buffer in order, with the final buffer read
/// from possible being only partially consumed. This method behaves
/// equivalently to a single call to [`try_write()`] with concatenated
/// buffers.
///
/// This function is usually paired with `writable()`.
///
/// [`try_write()`]: NamedPipeServer::try_write()
///
/// # Return
///
/// If data is successfully written, `Ok(n)` is returned, where `n` is the
/// number of bytes written. If the pipe is not ready to write data,
/// `Err(io::ErrorKind::WouldBlock)` is returned.
///
/// # Examples
///
/// ```no_run
/// use tokio::net::windows::named_pipe;
/// use std::error::Error;
/// use std::io;
///
/// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-server-try-write-vectored";
///
/// #[tokio::main]
/// async fn main() -> Result<(), Box<dyn Error>> {
/// let server = named_pipe::ServerOptions::new()
/// .create(PIPE_NAME)?;
///
/// let bufs = [io::IoSlice::new(b"hello "), io::IoSlice::new(b"world")];
///
/// loop {
/// // Wait for the pipe to be writable
/// server.writable().await?;
///
/// // Try to write data, this may still fail with `WouldBlock`
/// // if the readiness event is a false positive.
/// match server.try_write_vectored(&bufs) {
/// Ok(n) => {
/// break;
/// }
/// Err(e) if e.kind() == io::ErrorKind::WouldBlock => {
/// continue;
/// }
/// Err(e) => {
/// return Err(e.into());
/// }
/// }
/// }
///
/// Ok(())
/// }
/// ```
pub fn try_write_vectored(&self, buf: &[io::IoSlice<'_>]) -> io::Result<usize> {
self.io
.registration()
.try_io(Interest::WRITABLE, || (&*self.io).write_vectored(buf))
}
/// Tries to read or write from the pipe using a user-provided IO operation.
///
/// If the pipe is ready, the provided closure is called. The closure
/// should attempt to perform IO operation from the pipe by manually
/// calling the appropriate syscall. If the operation fails because the
/// pipe is not actually ready, then the closure should return a
/// `WouldBlock` error and the readiness flag is cleared. The return value
/// of the closure is then returned by `try_io`.
///
/// If the pipe is not ready, then the closure is not called
/// and a `WouldBlock` error is returned.
///
/// The closure should only return a `WouldBlock` error if it has performed
/// an IO operation on the pipe that failed due to the pipe not being
/// ready. Returning a `WouldBlock` error in any other situation will
/// incorrectly clear the readiness flag, which can cause the pipe to
/// behave incorrectly.
///
/// The closure should not perform the IO operation using any of the
/// methods defined on the Tokio `NamedPipeServer` type, as this will mess with
/// the readiness flag and can cause the pipe to behave incorrectly.
///
/// This method is not intended to be used with combined interests.
/// The closure should perform only one type of IO operation, so it should not
/// require more than one ready state. This method may panic or sleep forever
/// if it is called with a combined interest.
///
/// Usually, [`readable()`], [`writable()`] or [`ready()`] is used with this function.
///
/// [`readable()`]: NamedPipeServer::readable()
/// [`writable()`]: NamedPipeServer::writable()
/// [`ready()`]: NamedPipeServer::ready()
pub fn try_io<R>(
&self,
interest: Interest,
f: impl FnOnce() -> io::Result<R>,
) -> io::Result<R> {
self.io.registration().try_io(interest, f)
}
/// Reads or writes from the pipe using a user-provided IO operation.
///
/// The readiness of the pipe is awaited and when the pipe is ready,
/// the provided closure is called. The closure should attempt to perform
/// IO operation on the pipe by manually calling the appropriate syscall.
/// If the operation fails because the pipe is not actually ready,
/// then the closure should return a `WouldBlock` error. In such case the
/// readiness flag is cleared and the pipe readiness is awaited again.
/// This loop is repeated until the closure returns an `Ok` or an error
/// other than `WouldBlock`.
///
/// The closure should only return a `WouldBlock` error if it has performed
/// an IO operation on the pipe that failed due to the pipe not being
/// ready. Returning a `WouldBlock` error in any other situation will
/// incorrectly clear the readiness flag, which can cause the pipe to
/// behave incorrectly.
///
/// The closure should not perform the IO operation using any of the methods
/// defined on the Tokio `NamedPipeServer` type, as this will mess with the
/// readiness flag and can cause the pipe to behave incorrectly.
///
/// This method is not intended to be used with combined interests.
/// The closure should perform only one type of IO operation, so it should not
/// require more than one ready state. This method may panic or sleep forever
/// if it is called with a combined interest.
pub async fn async_io<R>(
&self,
interest: Interest,
f: impl FnMut() -> io::Result<R>,
) -> io::Result<R> {
self.io.registration().async_io(interest, f).await
}
}
impl AsyncRead for NamedPipeServer {
fn poll_read(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &mut ReadBuf<'_>,
) -> Poll<io::Result<()>> {
unsafe { self.io.poll_read(cx, buf) }
}
}
impl AsyncWrite for NamedPipeServer {
fn poll_write(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &[u8],
) -> Poll<io::Result<usize>> {
self.io.poll_write(cx, buf)
}
fn poll_write_vectored(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
bufs: &[io::IoSlice<'_>],
) -> Poll<io::Result<usize>> {
self.io.poll_write_vectored(cx, bufs)
}
fn poll_flush(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<io::Result<()>> {
Poll::Ready(Ok(()))
}
fn poll_shutdown(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
self.poll_flush(cx)
}
}
impl AsRawHandle for NamedPipeServer {
fn as_raw_handle(&self) -> RawHandle {
self.io.as_raw_handle()
}
}
impl AsHandle for NamedPipeServer {
fn as_handle(&self) -> BorrowedHandle<'_> {
unsafe { BorrowedHandle::borrow_raw(self.as_raw_handle()) }
}
}
/// A [Windows named pipe] client.
///
/// Constructed using [`ClientOptions::open`].
///
/// Connecting a client correctly involves a few steps. When connecting through
/// [`ClientOptions::open`], it might error indicating one of two things:
///
/// * [`std::io::ErrorKind::NotFound`] - There is no server available.
/// * [`ERROR_PIPE_BUSY`] - There is a server available, but it is busy. Sleep
/// for a while and try again.
///
/// So a correctly implemented client looks like this:
///
/// ```no_run
/// use std::time::Duration;
/// use tokio::net::windows::named_pipe::ClientOptions;
/// use tokio::time;
/// use windows_sys::Win32::Foundation::ERROR_PIPE_BUSY;
///
/// const PIPE_NAME: &str = r"\\.\pipe\named-pipe-idiomatic-client";
///
/// # #[tokio::main] async fn main() -> std::io::Result<()> {
/// let client = loop {
/// match ClientOptions::new().open(PIPE_NAME) {
/// Ok(client) => break client,
/// Err(e) if e.raw_os_error() == Some(ERROR_PIPE_BUSY as i32) => (),
/// Err(e) => return Err(e),
/// }
///
/// time::sleep(Duration::from_millis(50)).await;
/// };
///
/// /* use the connected client */
/// # Ok(()) }
/// ```
///
/// [`ERROR_PIPE_BUSY`]: https://docs.rs/windows-sys/latest/windows_sys/Win32/Foundation/constant.ERROR_PIPE_BUSY.html
/// [Windows named pipe]: https://docs.microsoft.com/en-us/windows/win32/ipc/named-pipes
#[derive(Debug)]
pub struct NamedPipeClient {
io: PollEvented<mio_windows::NamedPipe>,
}
impl NamedPipeClient {
/// Constructs a new named pipe client from the specified raw handle.
///
/// This function will consume ownership of the handle given, passing
/// responsibility for closing the handle to the returned object.
///
/// This function is also unsafe as the primitives currently returned have
/// the contract that they are the sole owner of the file descriptor they
/// are wrapping. Usage of this function could accidentally allow violating
/// this contract which can cause memory unsafety in code that relies on it
/// being true.
///
/// # Errors
///
/// This errors if called outside of a [Tokio Runtime], or in a runtime that
/// has not [enabled I/O], or if any OS-specific I/O errors occur.
///
/// [Tokio Runtime]: crate::runtime::Runtime
/// [enabled I/O]: crate::runtime::Builder::enable_io
pub unsafe fn from_raw_handle(handle: RawHandle) -> io::Result<Self> {
let named_pipe = mio_windows::NamedPipe::from_raw_handle(handle);
Ok(Self {
io: PollEvented::new(named_pipe)?,
})
}
/// Retrieves information about the named pipe the client is associated
/// with.
///
/// ```no_run
/// use tokio::net::windows::named_pipe::{ClientOptions, PipeEnd, PipeMode};
///
/// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-client-info";
///
/// # #[tokio::main] async fn main() -> std::io::Result<()> {
/// let client = ClientOptions::new()
/// .open(PIPE_NAME)?;
///
/// let client_info = client.info()?;
///
/// assert_eq!(client_info.end, PipeEnd::Client);
/// assert_eq!(client_info.mode, PipeMode::Message);
/// assert_eq!(client_info.max_instances, 5);
/// # Ok(()) }
/// ```
pub fn info(&self) -> io::Result<PipeInfo> {
// Safety: we're ensuring the lifetime of the named pipe.
unsafe { named_pipe_info(self.io.as_raw_handle()) }
}
/// Waits for any of the requested ready states.
///
/// This function is usually paired with `try_read()` or `try_write()`. It
/// can be used to concurrently read / write to the same pipe on a single
/// task without splitting the pipe.
///
/// The function may complete without the pipe being ready. This is a
/// false-positive and attempting an operation will return with
/// `io::ErrorKind::WouldBlock`. The function can also return with an empty
/// [`Ready`] set, so you should always check the returned value and possibly
/// wait again if the requested states are not set.
///
/// # Examples
///
/// Concurrently read and write to the pipe on the same task without
/// splitting.
///
/// ```no_run
/// use tokio::io::Interest;
/// use tokio::net::windows::named_pipe;
/// use std::error::Error;
/// use std::io;
///
/// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-client-ready";
///
/// #[tokio::main]
/// async fn main() -> Result<(), Box<dyn Error>> {
/// let client = named_pipe::ClientOptions::new().open(PIPE_NAME)?;
///
/// loop {
/// let ready = client.ready(Interest::READABLE | Interest::WRITABLE).await?;
///
/// if ready.is_readable() {
/// let mut data = vec![0; 1024];
/// // Try to read data, this may still fail with `WouldBlock`
/// // if the readiness event is a false positive.
/// match client.try_read(&mut data) {
/// Ok(n) => {
/// println!("read {} bytes", n);
/// }
/// Err(e) if e.kind() == io::ErrorKind::WouldBlock => {
/// continue;
/// }
/// Err(e) => {
/// return Err(e.into());
/// }
/// }
/// }
///
/// if ready.is_writable() {
/// // Try to write data, this may still fail with `WouldBlock`
/// // if the readiness event is a false positive.
/// match client.try_write(b"hello world") {
/// Ok(n) => {
/// println!("write {} bytes", n);
/// }
/// Err(e) if e.kind() == io::ErrorKind::WouldBlock => {
/// continue;
/// }
/// Err(e) => {
/// return Err(e.into());
/// }
/// }
/// }
/// }
/// }
/// ```
pub async fn ready(&self, interest: Interest) -> io::Result<Ready> {
let event = self.io.registration().readiness(interest).await?;
Ok(event.ready)
}
/// Waits for the pipe to become readable.
///
/// This function is equivalent to `ready(Interest::READABLE)` and is usually
/// paired with `try_read()`.
///
/// # Examples
///
/// ```no_run
/// use tokio::net::windows::named_pipe;
/// use std::error::Error;
/// use std::io;
///
/// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-client-readable";
///
/// #[tokio::main]
/// async fn main() -> Result<(), Box<dyn Error>> {
/// let client = named_pipe::ClientOptions::new().open(PIPE_NAME)?;
///
/// let mut msg = vec![0; 1024];
///
/// loop {
/// // Wait for the pipe to be readable
/// client.readable().await?;
///
/// // Try to read data, this may still fail with `WouldBlock`
/// // if the readiness event is a false positive.
/// match client.try_read(&mut msg) {
/// Ok(n) => {
/// msg.truncate(n);
/// break;
/// }
/// Err(e) if e.kind() == io::ErrorKind::WouldBlock => {
/// continue;
/// }
/// Err(e) => {
/// return Err(e.into());
/// }
/// }
/// }
///
/// println!("GOT = {:?}", msg);
/// Ok(())
/// }
/// ```
pub async fn readable(&self) -> io::Result<()> {
self.ready(Interest::READABLE).await?;
Ok(())
}
/// Polls for read readiness.
///
/// If the pipe is not currently ready for reading, this method will
/// store a clone of the `Waker` from the provided `Context`. When the pipe
/// becomes ready for reading, `Waker::wake` will be called on the waker.
///
/// Note that on multiple calls to `poll_read_ready` or `poll_read`, only
/// the `Waker` from the `Context` passed to the most recent call is
/// scheduled to receive a wakeup. (However, `poll_write_ready` retains a
/// second, independent waker.)
///
/// This function is intended for cases where creating and pinning a future
/// via [`readable`] is not feasible. Where possible, using [`readable`] is
/// preferred, as this supports polling from multiple tasks at once.
///
/// # Return value
///
/// The function returns:
///
/// * `Poll::Pending` if the pipe is not ready for reading.
/// * `Poll::Ready(Ok(()))` if the pipe is ready for reading.
/// * `Poll::Ready(Err(e))` if an error is encountered.
///
/// # Errors
///
/// This function may encounter any standard I/O error except `WouldBlock`.
///
/// [`readable`]: method@Self::readable
pub fn poll_read_ready(&self, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
self.io.registration().poll_read_ready(cx).map_ok(|_| ())
}
/// Tries to read data from the pipe into the provided buffer, returning how
/// many bytes were read.
///
/// Receives any pending data from the pipe but does not wait for new data
/// to arrive. On success, returns the number of bytes read. Because
/// `try_read()` is non-blocking, the buffer does not have to be stored by
/// the async task and can exist entirely on the stack.
///
/// Usually, [`readable()`] or [`ready()`] is used with this function.
///
/// [`readable()`]: NamedPipeClient::readable()
/// [`ready()`]: NamedPipeClient::ready()
///
/// # Return
///
/// If data is successfully read, `Ok(n)` is returned, where `n` is the
/// number of bytes read. If `n` is `0`, then it can indicate one of two scenarios:
///
/// 1. The pipe's read half is closed and will no longer yield data.
/// 2. The specified buffer was 0 bytes in length.
///
/// If the pipe is not ready to read data,
/// `Err(io::ErrorKind::WouldBlock)` is returned.
///
/// # Examples
///
/// ```no_run
/// use tokio::net::windows::named_pipe;
/// use std::error::Error;
/// use std::io;
///
/// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-client-try-read";
///
/// #[tokio::main]
/// async fn main() -> Result<(), Box<dyn Error>> {
/// let client = named_pipe::ClientOptions::new().open(PIPE_NAME)?;
///
/// loop {
/// // Wait for the pipe to be readable
/// client.readable().await?;
///
/// // Creating the buffer **after** the `await` prevents it from
/// // being stored in the async task.
/// let mut buf = [0; 4096];
///
/// // Try to read data, this may still fail with `WouldBlock`
/// // if the readiness event is a false positive.
/// match client.try_read(&mut buf) {
/// Ok(0) => break,
/// Ok(n) => {
/// println!("read {} bytes", n);
/// }
/// Err(e) if e.kind() == io::ErrorKind::WouldBlock => {
/// continue;
/// }
/// Err(e) => {
/// return Err(e.into());
/// }
/// }
/// }
///
/// Ok(())
/// }
/// ```
pub fn try_read(&self, buf: &mut [u8]) -> io::Result<usize> {
self.io
.registration()
.try_io(Interest::READABLE, || (&*self.io).read(buf))
}
/// Tries to read data from the pipe into the provided buffers, returning
/// how many bytes were read.
///
/// Data is copied to fill each buffer in order, with the final buffer
/// written to possibly being only partially filled. This method behaves
/// equivalently to a single call to [`try_read()`] with concatenated
/// buffers.
///
/// Receives any pending data from the pipe but does not wait for new data
/// to arrive. On success, returns the number of bytes read. Because
/// `try_read_vectored()` is non-blocking, the buffer does not have to be
/// stored by the async task and can exist entirely on the stack.
///
/// Usually, [`readable()`] or [`ready()`] is used with this function.
///
/// [`try_read()`]: NamedPipeClient::try_read()
/// [`readable()`]: NamedPipeClient::readable()
/// [`ready()`]: NamedPipeClient::ready()
///
/// # Return
///
/// If data is successfully read, `Ok(n)` is returned, where `n` is the
/// number of bytes read. `Ok(0)` indicates the pipe's read half is closed
/// and will no longer yield data. If the pipe is not ready to read data
/// `Err(io::ErrorKind::WouldBlock)` is returned.
///
/// # Examples
///
/// ```no_run
/// use tokio::net::windows::named_pipe;
/// use std::error::Error;
/// use std::io::{self, IoSliceMut};
///
/// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-client-try-read-vectored";
///
/// #[tokio::main]
/// async fn main() -> Result<(), Box<dyn Error>> {
/// let client = named_pipe::ClientOptions::new().open(PIPE_NAME)?;
///
/// loop {
/// // Wait for the pipe to be readable
/// client.readable().await?;
///
/// // Creating the buffer **after** the `await` prevents it from
/// // being stored in the async task.
/// let mut buf_a = [0; 512];
/// let mut buf_b = [0; 1024];
/// let mut bufs = [
/// IoSliceMut::new(&mut buf_a),
/// IoSliceMut::new(&mut buf_b),
/// ];
///
/// // Try to read data, this may still fail with `WouldBlock`
/// // if the readiness event is a false positive.
/// match client.try_read_vectored(&mut bufs) {
/// Ok(0) => break,
/// Ok(n) => {
/// println!("read {} bytes", n);
/// }
/// Err(e) if e.kind() == io::ErrorKind::WouldBlock => {
/// continue;
/// }
/// Err(e) => {
/// return Err(e.into());
/// }
/// }
/// }
///
/// Ok(())
/// }
/// ```
pub fn try_read_vectored(&self, bufs: &mut [io::IoSliceMut<'_>]) -> io::Result<usize> {
self.io
.registration()
.try_io(Interest::READABLE, || (&*self.io).read_vectored(bufs))
}
cfg_io_util! {
/// Tries to read data from the stream into the provided buffer, advancing the
/// buffer's internal cursor, returning how many bytes were read.
///
/// Receives any pending data from the pipe but does not wait for new data
/// to arrive. On success, returns the number of bytes read. Because
/// `try_read_buf()` is non-blocking, the buffer does not have to be stored by
/// the async task and can exist entirely on the stack.
///
/// Usually, [`readable()`] or [`ready()`] is used with this function.
///
/// [`readable()`]: NamedPipeClient::readable()
/// [`ready()`]: NamedPipeClient::ready()
///
/// # Return
///
/// If data is successfully read, `Ok(n)` is returned, where `n` is the
/// number of bytes read. `Ok(0)` indicates the stream's read half is closed
/// and will no longer yield data. If the stream is not ready to read data
/// `Err(io::ErrorKind::WouldBlock)` is returned.
///
/// # Examples
///
/// ```no_run
/// use tokio::net::windows::named_pipe;
/// use std::error::Error;
/// use std::io;
///
/// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-client-readable";
///
/// #[tokio::main]
/// async fn main() -> Result<(), Box<dyn Error>> {
/// let client = named_pipe::ClientOptions::new().open(PIPE_NAME)?;
///
/// loop {
/// // Wait for the pipe to be readable
/// client.readable().await?;
///
/// let mut buf = Vec::with_capacity(4096);
///
/// // Try to read data, this may still fail with `WouldBlock`
/// // if the readiness event is a false positive.
/// match client.try_read_buf(&mut buf) {
/// Ok(0) => break,
/// Ok(n) => {
/// println!("read {} bytes", n);
/// }
/// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
/// continue;
/// }
/// Err(e) => {
/// return Err(e.into());
/// }
/// }
/// }
///
/// Ok(())
/// }
/// ```
pub fn try_read_buf<B: BufMut>(&self, buf: &mut B) -> io::Result<usize> {
self.io.registration().try_io(Interest::READABLE, || {
use std::io::Read;
let dst = buf.chunk_mut();
let dst =
unsafe { &mut *(dst as *mut _ as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]) };
// Safety: We trust `NamedPipeClient::read` to have filled up `n` bytes in the
// buffer.
let n = (&*self.io).read(dst)?;
unsafe {
buf.advance_mut(n);
}
Ok(n)
})
}
}
/// Waits for the pipe to become writable.
///
/// This function is equivalent to `ready(Interest::WRITABLE)` and is usually
/// paired with `try_write()`.
///
/// # Examples
///
/// ```no_run
/// use tokio::net::windows::named_pipe;
/// use std::error::Error;
/// use std::io;
///
/// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-client-writable";
///
/// #[tokio::main]
/// async fn main() -> Result<(), Box<dyn Error>> {
/// let client = named_pipe::ClientOptions::new().open(PIPE_NAME)?;
///
/// loop {
/// // Wait for the pipe to be writable
/// client.writable().await?;
///
/// // Try to write data, this may still fail with `WouldBlock`
/// // if the readiness event is a false positive.
/// match client.try_write(b"hello world") {
/// Ok(n) => {
/// break;
/// }
/// Err(e) if e.kind() == io::ErrorKind::WouldBlock => {
/// continue;
/// }
/// Err(e) => {
/// return Err(e.into());
/// }
/// }
/// }
///
/// Ok(())
/// }
/// ```
pub async fn writable(&self) -> io::Result<()> {
self.ready(Interest::WRITABLE).await?;
Ok(())
}
/// Polls for write readiness.
///
/// If the pipe is not currently ready for writing, this method will
/// store a clone of the `Waker` from the provided `Context`. When the pipe
/// becomes ready for writing, `Waker::wake` will be called on the waker.
///
/// Note that on multiple calls to `poll_write_ready` or `poll_write`, only
/// the `Waker` from the `Context` passed to the most recent call is
/// scheduled to receive a wakeup. (However, `poll_read_ready` retains a
/// second, independent waker.)
///
/// This function is intended for cases where creating and pinning a future
/// via [`writable`] is not feasible. Where possible, using [`writable`] is
/// preferred, as this supports polling from multiple tasks at once.
///
/// # Return value
///
/// The function returns:
///
/// * `Poll::Pending` if the pipe is not ready for writing.
/// * `Poll::Ready(Ok(()))` if the pipe is ready for writing.
/// * `Poll::Ready(Err(e))` if an error is encountered.
///
/// # Errors
///
/// This function may encounter any standard I/O error except `WouldBlock`.
///
/// [`writable`]: method@Self::writable
pub fn poll_write_ready(&self, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
self.io.registration().poll_write_ready(cx).map_ok(|_| ())
}
/// Tries to write a buffer to the pipe, returning how many bytes were
/// written.
///
/// The function will attempt to write the entire contents of `buf`, but
/// only part of the buffer may be written.
///
/// This function is usually paired with `writable()`.
///
/// # Return
///
/// If data is successfully written, `Ok(n)` is returned, where `n` is the
/// number of bytes written. If the pipe is not ready to write data,
/// `Err(io::ErrorKind::WouldBlock)` is returned.
///
/// # Examples
///
/// ```no_run
/// use tokio::net::windows::named_pipe;
/// use std::error::Error;
/// use std::io;
///
/// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-client-try-write";
///
/// #[tokio::main]
/// async fn main() -> Result<(), Box<dyn Error>> {
/// let client = named_pipe::ClientOptions::new().open(PIPE_NAME)?;
///
/// loop {
/// // Wait for the pipe to be writable
/// client.writable().await?;
///
/// // Try to write data, this may still fail with `WouldBlock`
/// // if the readiness event is a false positive.
/// match client.try_write(b"hello world") {
/// Ok(n) => {
/// break;
/// }
/// Err(e) if e.kind() == io::ErrorKind::WouldBlock => {
/// continue;
/// }
/// Err(e) => {
/// return Err(e.into());
/// }
/// }
/// }
///
/// Ok(())
/// }
/// ```
pub fn try_write(&self, buf: &[u8]) -> io::Result<usize> {
self.io
.registration()
.try_io(Interest::WRITABLE, || (&*self.io).write(buf))
}
/// Tries to write several buffers to the pipe, returning how many bytes
/// were written.
///
/// Data is written from each buffer in order, with the final buffer read
/// from possible being only partially consumed. This method behaves
/// equivalently to a single call to [`try_write()`] with concatenated
/// buffers.
///
/// This function is usually paired with `writable()`.
///
/// [`try_write()`]: NamedPipeClient::try_write()
///
/// # Return
///
/// If data is successfully written, `Ok(n)` is returned, where `n` is the
/// number of bytes written. If the pipe is not ready to write data,
/// `Err(io::ErrorKind::WouldBlock)` is returned.
///
/// # Examples
///
/// ```no_run
/// use tokio::net::windows::named_pipe;
/// use std::error::Error;
/// use std::io;
///
/// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-client-try-write-vectored";
///
/// #[tokio::main]
/// async fn main() -> Result<(), Box<dyn Error>> {
/// let client = named_pipe::ClientOptions::new().open(PIPE_NAME)?;
///
/// let bufs = [io::IoSlice::new(b"hello "), io::IoSlice::new(b"world")];
///
/// loop {
/// // Wait for the pipe to be writable
/// client.writable().await?;
///
/// // Try to write data, this may still fail with `WouldBlock`
/// // if the readiness event is a false positive.
/// match client.try_write_vectored(&bufs) {
/// Ok(n) => {
/// break;
/// }
/// Err(e) if e.kind() == io::ErrorKind::WouldBlock => {
/// continue;
/// }
/// Err(e) => {
/// return Err(e.into());
/// }
/// }
/// }
///
/// Ok(())
/// }
/// ```
pub fn try_write_vectored(&self, buf: &[io::IoSlice<'_>]) -> io::Result<usize> {
self.io
.registration()
.try_io(Interest::WRITABLE, || (&*self.io).write_vectored(buf))
}
/// Tries to read or write from the pipe using a user-provided IO operation.
///
/// If the pipe is ready, the provided closure is called. The closure
/// should attempt to perform IO operation from the pipe by manually
/// calling the appropriate syscall. If the operation fails because the
/// pipe is not actually ready, then the closure should return a
/// `WouldBlock` error and the readiness flag is cleared. The return value
/// of the closure is then returned by `try_io`.
///
/// If the pipe is not ready, then the closure is not called
/// and a `WouldBlock` error is returned.
///
/// The closure should only return a `WouldBlock` error if it has performed
/// an IO operation on the pipe that failed due to the pipe not being
/// ready. Returning a `WouldBlock` error in any other situation will
/// incorrectly clear the readiness flag, which can cause the pipe to
/// behave incorrectly.
///
/// The closure should not perform the IO operation using any of the methods
/// defined on the Tokio `NamedPipeClient` type, as this will mess with the
/// readiness flag and can cause the pipe to behave incorrectly.
///
/// This method is not intended to be used with combined interests.
/// The closure should perform only one type of IO operation, so it should not
/// require more than one ready state. This method may panic or sleep forever
/// if it is called with a combined interest.
///
/// Usually, [`readable()`], [`writable()`] or [`ready()`] is used with this function.
///
/// [`readable()`]: NamedPipeClient::readable()
/// [`writable()`]: NamedPipeClient::writable()
/// [`ready()`]: NamedPipeClient::ready()
pub fn try_io<R>(
&self,
interest: Interest,
f: impl FnOnce() -> io::Result<R>,
) -> io::Result<R> {
self.io.registration().try_io(interest, f)
}
/// Reads or writes from the pipe using a user-provided IO operation.
///
/// The readiness of the pipe is awaited and when the pipe is ready,
/// the provided closure is called. The closure should attempt to perform
/// IO operation on the pipe by manually calling the appropriate syscall.
/// If the operation fails because the pipe is not actually ready,
/// then the closure should return a `WouldBlock` error. In such case the
/// readiness flag is cleared and the pipe readiness is awaited again.
/// This loop is repeated until the closure returns an `Ok` or an error
/// other than `WouldBlock`.
///
/// The closure should only return a `WouldBlock` error if it has performed
/// an IO operation on the pipe that failed due to the pipe not being
/// ready. Returning a `WouldBlock` error in any other situation will
/// incorrectly clear the readiness flag, which can cause the pipe to
/// behave incorrectly.
///
/// The closure should not perform the IO operation using any of the methods
/// defined on the Tokio `NamedPipeClient` type, as this will mess with the
/// readiness flag and can cause the pipe to behave incorrectly.
///
/// This method is not intended to be used with combined interests.
/// The closure should perform only one type of IO operation, so it should not
/// require more than one ready state. This method may panic or sleep forever
/// if it is called with a combined interest.
pub async fn async_io<R>(
&self,
interest: Interest,
f: impl FnMut() -> io::Result<R>,
) -> io::Result<R> {
self.io.registration().async_io(interest, f).await
}
}
impl AsyncRead for NamedPipeClient {
fn poll_read(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &mut ReadBuf<'_>,
) -> Poll<io::Result<()>> {
unsafe { self.io.poll_read(cx, buf) }
}
}
impl AsyncWrite for NamedPipeClient {
fn poll_write(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &[u8],
) -> Poll<io::Result<usize>> {
self.io.poll_write(cx, buf)
}
fn poll_write_vectored(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
bufs: &[io::IoSlice<'_>],
) -> Poll<io::Result<usize>> {
self.io.poll_write_vectored(cx, bufs)
}
fn poll_flush(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<io::Result<()>> {
Poll::Ready(Ok(()))
}
fn poll_shutdown(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
self.poll_flush(cx)
}
}
impl AsRawHandle for NamedPipeClient {
fn as_raw_handle(&self) -> RawHandle {
self.io.as_raw_handle()
}
}
impl AsHandle for NamedPipeClient {
fn as_handle(&self) -> BorrowedHandle<'_> {
unsafe { BorrowedHandle::borrow_raw(self.as_raw_handle()) }
}
}
/// A builder structure for construct a named pipe with named pipe-specific
/// options. This is required to use for named pipe servers who wants to modify
/// pipe-related options.
///
/// See [`ServerOptions::create`].
#[derive(Debug, Clone)]
pub struct ServerOptions {
// dwOpenMode
access_inbound: bool,
access_outbound: bool,
first_pipe_instance: bool,
write_dac: bool,
write_owner: bool,
access_system_security: bool,
// dwPipeMode
pipe_mode: PipeMode,
reject_remote_clients: bool,
// other options
max_instances: u32,
out_buffer_size: u32,
in_buffer_size: u32,
default_timeout: u32,
}
impl ServerOptions {
/// Creates a new named pipe builder with the default settings.
///
/// ```
/// use tokio::net::windows::named_pipe::ServerOptions;
///
/// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-new";
///
/// # #[tokio::main] async fn main() -> std::io::Result<()> {
/// let server = ServerOptions::new().create(PIPE_NAME)?;
/// # Ok(()) }
/// ```
pub fn new() -> ServerOptions {
ServerOptions {
access_inbound: true,
access_outbound: true,
first_pipe_instance: false,
write_dac: false,
write_owner: false,
access_system_security: false,
pipe_mode: PipeMode::Byte,
reject_remote_clients: true,
max_instances: windows_sys::PIPE_UNLIMITED_INSTANCES,
out_buffer_size: 65536,
in_buffer_size: 65536,
default_timeout: 0,
}
}
/// The pipe mode.
///
/// The default pipe mode is [`PipeMode::Byte`]. See [`PipeMode`] for
/// documentation of what each mode means.
///
/// This corresponds to specifying `PIPE_TYPE_` and `PIPE_READMODE_` in [`dwPipeMode`].
///
/// [`dwPipeMode`]: https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createnamedpipea
pub fn pipe_mode(&mut self, pipe_mode: PipeMode) -> &mut Self {
self.pipe_mode = pipe_mode;
self
}
/// The flow of data in the pipe goes from client to server only.
///
/// This corresponds to setting [`PIPE_ACCESS_INBOUND`].
///
/// [`PIPE_ACCESS_INBOUND`]: https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createnamedpipea#pipe_access_inbound
///
/// # Errors
///
/// Server side prevents connecting by denying inbound access, client errors
/// with [`std::io::ErrorKind::PermissionDenied`] when attempting to create
/// the connection.
///
/// ```
/// use std::io;
/// use tokio::net::windows::named_pipe::{ClientOptions, ServerOptions};
///
/// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-access-inbound-err1";
///
/// # #[tokio::main] async fn main() -> io::Result<()> {
/// let _server = ServerOptions::new()
/// .access_inbound(false)
/// .create(PIPE_NAME)?;
///
/// let e = ClientOptions::new()
/// .open(PIPE_NAME)
/// .unwrap_err();
///
/// assert_eq!(e.kind(), io::ErrorKind::PermissionDenied);
/// # Ok(()) }
/// ```
///
/// Disabling writing allows a client to connect, but errors with
/// [`std::io::ErrorKind::PermissionDenied`] if a write is attempted.
///
/// ```
/// use std::io;
/// use tokio::io::AsyncWriteExt;
/// use tokio::net::windows::named_pipe::{ClientOptions, ServerOptions};
///
/// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-access-inbound-err2";
///
/// # #[tokio::main] async fn main() -> io::Result<()> {
/// let server = ServerOptions::new()
/// .access_inbound(false)
/// .create(PIPE_NAME)?;
///
/// let mut client = ClientOptions::new()
/// .write(false)
/// .open(PIPE_NAME)?;
///
/// server.connect().await?;
///
/// let e = client.write(b"ping").await.unwrap_err();
/// assert_eq!(e.kind(), io::ErrorKind::PermissionDenied);
/// # Ok(()) }
/// ```
///
/// # Examples
///
/// A unidirectional named pipe that only supports server-to-client
/// communication.
///
/// ```
/// use std::io;
/// use tokio::io::{AsyncReadExt, AsyncWriteExt};
/// use tokio::net::windows::named_pipe::{ClientOptions, ServerOptions};
///
/// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-access-inbound";
///
/// # #[tokio::main] async fn main() -> io::Result<()> {
/// let mut server = ServerOptions::new()
/// .access_inbound(false)
/// .create(PIPE_NAME)?;
///
/// let mut client = ClientOptions::new()
/// .write(false)
/// .open(PIPE_NAME)?;
///
/// server.connect().await?;
///
/// let write = server.write_all(b"ping");
///
/// let mut buf = [0u8; 4];
/// let read = client.read_exact(&mut buf);
///
/// let ((), read) = tokio::try_join!(write, read)?;
///
/// assert_eq!(read, 4);
/// assert_eq!(&buf[..], b"ping");
/// # Ok(()) }
/// ```
pub fn access_inbound(&mut self, allowed: bool) -> &mut Self {
self.access_inbound = allowed;
self
}
/// The flow of data in the pipe goes from server to client only.
///
/// This corresponds to setting [`PIPE_ACCESS_OUTBOUND`].
///
/// [`PIPE_ACCESS_OUTBOUND`]: https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createnamedpipea#pipe_access_outbound
///
/// # Errors
///
/// Server side prevents connecting by denying outbound access, client
/// errors with [`std::io::ErrorKind::PermissionDenied`] when attempting to
/// create the connection.
///
/// ```
/// use std::io;
/// use tokio::net::windows::named_pipe::{ClientOptions, ServerOptions};
///
/// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-access-outbound-err1";
///
/// # #[tokio::main] async fn main() -> io::Result<()> {
/// let server = ServerOptions::new()
/// .access_outbound(false)
/// .create(PIPE_NAME)?;
///
/// let e = ClientOptions::new()
/// .open(PIPE_NAME)
/// .unwrap_err();
///
/// assert_eq!(e.kind(), io::ErrorKind::PermissionDenied);
/// # Ok(()) }
/// ```
///
/// Disabling reading allows a client to connect, but attempting to read
/// will error with [`std::io::ErrorKind::PermissionDenied`].
///
/// ```
/// use std::io;
/// use tokio::io::AsyncReadExt;
/// use tokio::net::windows::named_pipe::{ClientOptions, ServerOptions};
///
/// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-access-outbound-err2";
///
/// # #[tokio::main] async fn main() -> io::Result<()> {
/// let server = ServerOptions::new()
/// .access_outbound(false)
/// .create(PIPE_NAME)?;
///
/// let mut client = ClientOptions::new()
/// .read(false)
/// .open(PIPE_NAME)?;
///
/// server.connect().await?;
///
/// let mut buf = [0u8; 4];
/// let e = client.read(&mut buf).await.unwrap_err();
/// assert_eq!(e.kind(), io::ErrorKind::PermissionDenied);
/// # Ok(()) }
/// ```
///
/// # Examples
///
/// A unidirectional named pipe that only supports client-to-server
/// communication.
///
/// ```
/// use tokio::io::{AsyncReadExt, AsyncWriteExt};
/// use tokio::net::windows::named_pipe::{ClientOptions, ServerOptions};
///
/// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-access-outbound";
///
/// # #[tokio::main] async fn main() -> std::io::Result<()> {
/// let mut server = ServerOptions::new()
/// .access_outbound(false)
/// .create(PIPE_NAME)?;
///
/// let mut client = ClientOptions::new()
/// .read(false)
/// .open(PIPE_NAME)?;
///
/// server.connect().await?;
///
/// let write = client.write_all(b"ping");
///
/// let mut buf = [0u8; 4];
/// let read = server.read_exact(&mut buf);
///
/// let ((), read) = tokio::try_join!(write, read)?;
///
/// println!("done reading and writing");
///
/// assert_eq!(read, 4);
/// assert_eq!(&buf[..], b"ping");
/// # Ok(()) }
/// ```
pub fn access_outbound(&mut self, allowed: bool) -> &mut Self {
self.access_outbound = allowed;
self
}
/// If you attempt to create multiple instances of a pipe with this flag
/// set, creation of the first server instance succeeds, but creation of any
/// subsequent instances will fail with
/// [`std::io::ErrorKind::PermissionDenied`].
///
/// This option is intended to be used with servers that want to ensure that
/// they are the only process listening for clients on a given named pipe.
/// This is accomplished by enabling it for the first server instance
/// created in a process.
///
/// This corresponds to setting [`FILE_FLAG_FIRST_PIPE_INSTANCE`].
///
/// # Errors
///
/// If this option is set and more than one instance of the server for a
/// given named pipe exists, calling [`create`] will fail with
/// [`std::io::ErrorKind::PermissionDenied`].
///
/// ```
/// use std::io;
/// use tokio::net::windows::named_pipe::ServerOptions;
///
/// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-first-instance-error";
///
/// # #[tokio::main] async fn main() -> io::Result<()> {
/// let server1 = ServerOptions::new()
/// .first_pipe_instance(true)
/// .create(PIPE_NAME)?;
///
/// // Second server errs, since it's not the first instance.
/// let e = ServerOptions::new()
/// .first_pipe_instance(true)
/// .create(PIPE_NAME)
/// .unwrap_err();
///
/// assert_eq!(e.kind(), io::ErrorKind::PermissionDenied);
/// # Ok(()) }
/// ```
///
/// # Examples
///
/// ```
/// use std::io;
/// use tokio::net::windows::named_pipe::ServerOptions;
///
/// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-first-instance";
///
/// # #[tokio::main] async fn main() -> io::Result<()> {
/// let mut builder = ServerOptions::new();
/// builder.first_pipe_instance(true);
///
/// let server = builder.create(PIPE_NAME)?;
/// let e = builder.create(PIPE_NAME).unwrap_err();
/// assert_eq!(e.kind(), io::ErrorKind::PermissionDenied);
/// drop(server);
///
/// // OK: since, we've closed the other instance.
/// let _server2 = builder.create(PIPE_NAME)?;
/// # Ok(()) }
/// ```
///
/// [`create`]: ServerOptions::create
/// [`FILE_FLAG_FIRST_PIPE_INSTANCE`]: https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createnamedpipea#pipe_first_pipe_instance
pub fn first_pipe_instance(&mut self, first: bool) -> &mut Self {
self.first_pipe_instance = first;
self
}
/// Requests permission to modify the pipe's discretionary access control list.
///
/// This corresponds to setting [`WRITE_DAC`] in dwOpenMode.
///
/// # Examples
///
/// ```
/// use std::{io, os::windows::prelude::AsRawHandle, ptr};
///
/// use tokio::net::windows::named_pipe::ServerOptions;
/// use windows_sys::{
/// Win32::Foundation::ERROR_SUCCESS,
/// Win32::Security::DACL_SECURITY_INFORMATION,
/// Win32::Security::Authorization::{SetSecurityInfo, SE_KERNEL_OBJECT},
/// };
///
/// const PIPE_NAME: &str = r"\\.\pipe\write_dac_pipe";
///
/// # #[tokio::main] async fn main() -> io::Result<()> {
/// let mut pipe_template = ServerOptions::new();
/// pipe_template.write_dac(true);
/// let pipe = pipe_template.create(PIPE_NAME)?;
///
/// unsafe {
/// assert_eq!(
/// ERROR_SUCCESS,
/// SetSecurityInfo(
/// pipe.as_raw_handle() as _,
/// SE_KERNEL_OBJECT,
/// DACL_SECURITY_INFORMATION,
/// ptr::null_mut(),
/// ptr::null_mut(),
/// ptr::null_mut(),
/// ptr::null_mut(),
/// )
/// );
/// }
///
/// # Ok(()) }
/// ```
///
/// ```
/// use std::{io, os::windows::prelude::AsRawHandle, ptr};
///
/// use tokio::net::windows::named_pipe::ServerOptions;
/// use windows_sys::{
/// Win32::Foundation::ERROR_ACCESS_DENIED,
/// Win32::Security::DACL_SECURITY_INFORMATION,
/// Win32::Security::Authorization::{SetSecurityInfo, SE_KERNEL_OBJECT},
/// };
///
/// const PIPE_NAME: &str = r"\\.\pipe\write_dac_pipe_fail";
///
/// # #[tokio::main] async fn main() -> io::Result<()> {
/// let mut pipe_template = ServerOptions::new();
/// pipe_template.write_dac(false);
/// let pipe = pipe_template.create(PIPE_NAME)?;
///
/// unsafe {
/// assert_eq!(
/// ERROR_ACCESS_DENIED,
/// SetSecurityInfo(
/// pipe.as_raw_handle() as _,
/// SE_KERNEL_OBJECT,
/// DACL_SECURITY_INFORMATION,
/// ptr::null_mut(),
/// ptr::null_mut(),
/// ptr::null_mut(),
/// ptr::null_mut(),
/// )
/// );
/// }
///
/// # Ok(()) }
/// ```
///
/// [`WRITE_DAC`]: https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createnamedpipea
pub fn write_dac(&mut self, requested: bool) -> &mut Self {
self.write_dac = requested;
self
}
/// Requests permission to modify the pipe's owner.
///
/// This corresponds to setting [`WRITE_OWNER`] in dwOpenMode.
///
/// [`WRITE_OWNER`]: https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createnamedpipea
pub fn write_owner(&mut self, requested: bool) -> &mut Self {
self.write_owner = requested;
self
}
/// Requests permission to modify the pipe's system access control list.
///
/// This corresponds to setting [`ACCESS_SYSTEM_SECURITY`] in dwOpenMode.
///
/// [`ACCESS_SYSTEM_SECURITY`]: https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createnamedpipea
pub fn access_system_security(&mut self, requested: bool) -> &mut Self {
self.access_system_security = requested;
self
}
/// Indicates whether this server can accept remote clients or not. Remote
/// clients are disabled by default.
///
/// This corresponds to setting [`PIPE_REJECT_REMOTE_CLIENTS`].
///
/// [`PIPE_REJECT_REMOTE_CLIENTS`]: https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createnamedpipea#pipe_reject_remote_clients
pub fn reject_remote_clients(&mut self, reject: bool) -> &mut Self {
self.reject_remote_clients = reject;
self
}
/// The maximum number of instances that can be created for this pipe. The
/// first instance of the pipe can specify this value; the same number must
/// be specified for other instances of the pipe. Acceptable values are in
/// the range 1 through 254. The default value is unlimited.
///
/// This corresponds to specifying [`nMaxInstances`].
///
/// [`nMaxInstances`]: https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createnamedpipea
///
/// # Errors
///
/// The same numbers of `max_instances` have to be used by all servers. Any
/// additional servers trying to be built which uses a mismatching value
/// might error.
///
/// ```
/// use std::io;
/// use tokio::net::windows::named_pipe::{ServerOptions, ClientOptions};
/// use windows_sys::Win32::Foundation::ERROR_PIPE_BUSY;
///
/// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-max-instances";
///
/// # #[tokio::main] async fn main() -> io::Result<()> {
/// let mut server = ServerOptions::new();
/// server.max_instances(2);
///
/// let s1 = server.create(PIPE_NAME)?;
/// let c1 = ClientOptions::new().open(PIPE_NAME);
///
/// let s2 = server.create(PIPE_NAME)?;
/// let c2 = ClientOptions::new().open(PIPE_NAME);
///
/// // Too many servers!
/// let e = server.create(PIPE_NAME).unwrap_err();
/// assert_eq!(e.raw_os_error(), Some(ERROR_PIPE_BUSY as i32));
///
/// // Still too many servers even if we specify a higher value!
/// let e = server.max_instances(100).create(PIPE_NAME).unwrap_err();
/// assert_eq!(e.raw_os_error(), Some(ERROR_PIPE_BUSY as i32));
/// # Ok(()) }
/// ```
///
/// # Panics
///
/// This function will panic if more than 254 instances are specified. If
/// you do not wish to set an instance limit, leave it unspecified.
///
/// ```should_panic
/// use tokio::net::windows::named_pipe::ServerOptions;
///
/// # #[tokio::main] async fn main() -> std::io::Result<()> {
/// let builder = ServerOptions::new().max_instances(255);
/// # Ok(()) }
/// ```
#[track_caller]
pub fn max_instances(&mut self, instances: usize) -> &mut Self {
assert!(instances < 255, "cannot specify more than 254 instances");
self.max_instances = instances as u32;
self
}
/// The number of bytes to reserve for the output buffer.
///
/// This corresponds to specifying [`nOutBufferSize`].
///
/// [`nOutBufferSize`]: https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createnamedpipea
pub fn out_buffer_size(&mut self, buffer: u32) -> &mut Self {
self.out_buffer_size = buffer;
self
}
/// The number of bytes to reserve for the input buffer.
///
/// This corresponds to specifying [`nInBufferSize`].
///
/// [`nInBufferSize`]: https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createnamedpipea
pub fn in_buffer_size(&mut self, buffer: u32) -> &mut Self {
self.in_buffer_size = buffer;
self
}
/// Creates the named pipe identified by `addr` for use as a server.
///
/// This uses the [`CreateNamedPipe`] function.
///
/// [`CreateNamedPipe`]: https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createnamedpipea
///
/// # Errors
///
/// This errors if called outside of a [Tokio Runtime], or in a runtime that
/// has not [enabled I/O], or if any OS-specific I/O errors occur.
///
/// [Tokio Runtime]: crate::runtime::Runtime
/// [enabled I/O]: crate::runtime::Builder::enable_io
///
/// # Examples
///
/// ```
/// use tokio::net::windows::named_pipe::ServerOptions;
///
/// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-create";
///
/// # #[tokio::main] async fn main() -> std::io::Result<()> {
/// let server = ServerOptions::new().create(PIPE_NAME)?;
/// # Ok(()) }
/// ```
pub fn create(&self, addr: impl AsRef<OsStr>) -> io::Result<NamedPipeServer> {
// Safety: We're calling create_with_security_attributes_raw w/ a null
// pointer which disables it.
unsafe { self.create_with_security_attributes_raw(addr, ptr::null_mut()) }
}
/// Creates the named pipe identified by `addr` for use as a server.
///
/// This is the same as [`create`] except that it supports providing the raw
/// pointer to a structure of [`SECURITY_ATTRIBUTES`] which will be passed
/// as the `lpSecurityAttributes` argument to [`CreateFile`].
///
/// # Errors
///
/// This errors if called outside of a [Tokio Runtime], or in a runtime that
/// has not [enabled I/O], or if any OS-specific I/O errors occur.
///
/// [Tokio Runtime]: crate::runtime::Runtime
/// [enabled I/O]: crate::runtime::Builder::enable_io
///
/// # Safety
///
/// The `attrs` argument must either be null or point at a valid instance of
/// the [`SECURITY_ATTRIBUTES`] structure. If the argument is null, the
/// behavior is identical to calling the [`create`] method.
///
/// [`create`]: ServerOptions::create
/// [`CreateFile`]: https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilew
/// [`SECURITY_ATTRIBUTES`]: https://docs.rs/windows-sys/latest/windows_sys/Win32/Security/struct.SECURITY_ATTRIBUTES.html
pub unsafe fn create_with_security_attributes_raw(
&self,
addr: impl AsRef<OsStr>,
attrs: *mut c_void,
) -> io::Result<NamedPipeServer> {
let addr = encode_addr(addr);
let pipe_mode = {
let mut mode = if matches!(self.pipe_mode, PipeMode::Message) {
windows_sys::PIPE_TYPE_MESSAGE | windows_sys::PIPE_READMODE_MESSAGE
} else {
windows_sys::PIPE_TYPE_BYTE | windows_sys::PIPE_READMODE_BYTE
};
if self.reject_remote_clients {
mode |= windows_sys::PIPE_REJECT_REMOTE_CLIENTS;
} else {
mode |= windows_sys::PIPE_ACCEPT_REMOTE_CLIENTS;
}
mode
};
let open_mode = {
let mut mode = windows_sys::FILE_FLAG_OVERLAPPED;
if self.access_inbound {
mode |= windows_sys::PIPE_ACCESS_INBOUND;
}
if self.access_outbound {
mode |= windows_sys::PIPE_ACCESS_OUTBOUND;
}
if self.first_pipe_instance {
mode |= windows_sys::FILE_FLAG_FIRST_PIPE_INSTANCE;
}
if self.write_dac {
mode |= windows_sys::WRITE_DAC;
}
if self.write_owner {
mode |= windows_sys::WRITE_OWNER;
}
if self.access_system_security {
mode |= windows_sys::ACCESS_SYSTEM_SECURITY;
}
mode
};
let h = windows_sys::CreateNamedPipeW(
addr.as_ptr(),
open_mode,
pipe_mode,
self.max_instances,
self.out_buffer_size,
self.in_buffer_size,
self.default_timeout,
attrs as *mut _,
);
if h == windows_sys::INVALID_HANDLE_VALUE {
return Err(io::Error::last_os_error());
}
NamedPipeServer::from_raw_handle(h as _)
}
}
/// A builder suitable for building and interacting with named pipes from the
/// client side.
///
/// See [`ClientOptions::open`].
#[derive(Debug, Clone)]
pub struct ClientOptions {
generic_read: bool,
generic_write: bool,
security_qos_flags: u32,
pipe_mode: PipeMode,
}
impl ClientOptions {
/// Creates a new named pipe builder with the default settings.
///
/// ```
/// use tokio::net::windows::named_pipe::{ServerOptions, ClientOptions};
///
/// const PIPE_NAME: &str = r"\\.\pipe\tokio-named-pipe-client-new";
///
/// # #[tokio::main] async fn main() -> std::io::Result<()> {
/// // Server must be created in order for the client creation to succeed.
/// let server = ServerOptions::new().create(PIPE_NAME)?;
/// let client = ClientOptions::new().open(PIPE_NAME)?;
/// # Ok(()) }
/// ```
pub fn new() -> Self {
Self {
generic_read: true,
generic_write: true,
security_qos_flags: windows_sys::SECURITY_IDENTIFICATION
| windows_sys::SECURITY_SQOS_PRESENT,
pipe_mode: PipeMode::Byte,
}
}
/// If the client supports reading data. This is enabled by default.
///
/// This corresponds to setting [`GENERIC_READ`] in the call to [`CreateFile`].
///
/// [`GENERIC_READ`]: https://docs.microsoft.com/en-us/windows/win32/secauthz/generic-access-rights
/// [`CreateFile`]: https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilew
pub fn read(&mut self, allowed: bool) -> &mut Self {
self.generic_read = allowed;
self
}
/// If the created pipe supports writing data. This is enabled by default.
///
/// This corresponds to setting [`GENERIC_WRITE`] in the call to [`CreateFile`].
///
/// [`GENERIC_WRITE`]: https://docs.microsoft.com/en-us/windows/win32/secauthz/generic-access-rights
/// [`CreateFile`]: https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilew
pub fn write(&mut self, allowed: bool) -> &mut Self {
self.generic_write = allowed;
self
}
/// Sets qos flags which are combined with other flags and attributes in the
/// call to [`CreateFile`].
///
/// By default `security_qos_flags` is set to [`SECURITY_IDENTIFICATION`],
/// calling this function would override that value completely with the
/// argument specified.
///
/// When `security_qos_flags` is not set, a malicious program can gain the
/// elevated privileges of a privileged Rust process when it allows opening
/// user-specified paths, by tricking it into opening a named pipe. So
/// arguably `security_qos_flags` should also be set when opening arbitrary
/// paths. However the bits can then conflict with other flags, specifically
/// `FILE_FLAG_OPEN_NO_RECALL`.
///
/// For information about possible values, see [Impersonation Levels] on the
/// Windows Dev Center site. The `SECURITY_SQOS_PRESENT` flag is set
/// automatically when using this method.
///
/// [`CreateFile`]: https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilea
/// [`SECURITY_IDENTIFICATION`]: https://docs.rs/windows-sys/latest/windows_sys/Win32/Storage/FileSystem/constant.SECURITY_IDENTIFICATION.html
/// [Impersonation Levels]: https://docs.microsoft.com/en-us/windows/win32/api/winnt/ne-winnt-security_impersonation_level
pub fn security_qos_flags(&mut self, flags: u32) -> &mut Self {
// See: https://github.com/rust-lang/rust/pull/58216
self.security_qos_flags = flags | windows_sys::SECURITY_SQOS_PRESENT;
self
}
/// The pipe mode.
///
/// The default pipe mode is [`PipeMode::Byte`]. See [`PipeMode`] for
/// documentation of what each mode means.
pub fn pipe_mode(&mut self, pipe_mode: PipeMode) -> &mut Self {
self.pipe_mode = pipe_mode;
self
}
/// Opens the named pipe identified by `addr`.
///
/// This opens the client using [`CreateFile`] with the
/// `dwCreationDisposition` option set to `OPEN_EXISTING`.
///
/// [`CreateFile`]: https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilea
///
/// # Errors
///
/// This errors if called outside of a [Tokio Runtime], or in a runtime that
/// has not [enabled I/O], or if any OS-specific I/O errors occur.
///
/// There are a few errors you need to take into account when creating a
/// named pipe on the client side:
///
/// * [`std::io::ErrorKind::NotFound`] - This indicates that the named pipe
/// does not exist. Presumably the server is not up.
/// * [`ERROR_PIPE_BUSY`] - This error is raised when the named pipe exists,
/// but the server is not currently waiting for a connection. Please see the
/// examples for how to check for this error.
///
/// [`ERROR_PIPE_BUSY`]: https://docs.rs/windows-sys/latest/windows_sys/Win32/Foundation/constant.ERROR_PIPE_BUSY.html
/// [enabled I/O]: crate::runtime::Builder::enable_io
/// [Tokio Runtime]: crate::runtime::Runtime
///
/// A connect loop that waits until a pipe becomes available looks like
/// this:
///
/// ```no_run
/// use std::time::Duration;
/// use tokio::net::windows::named_pipe::ClientOptions;
/// use tokio::time;
/// use windows_sys::Win32::Foundation::ERROR_PIPE_BUSY;
///
/// const PIPE_NAME: &str = r"\\.\pipe\mynamedpipe";
///
/// # #[tokio::main] async fn main() -> std::io::Result<()> {
/// let client = loop {
/// match ClientOptions::new().open(PIPE_NAME) {
/// Ok(client) => break client,
/// Err(e) if e.raw_os_error() == Some(ERROR_PIPE_BUSY as i32) => (),
/// Err(e) => return Err(e),
/// }
///
/// time::sleep(Duration::from_millis(50)).await;
/// };
///
/// // use the connected client.
/// # Ok(()) }
/// ```
pub fn open(&self, addr: impl AsRef<OsStr>) -> io::Result<NamedPipeClient> {
// Safety: We're calling open_with_security_attributes_raw w/ a null
// pointer which disables it.
unsafe { self.open_with_security_attributes_raw(addr, ptr::null_mut()) }
}
/// Opens the named pipe identified by `addr`.
///
/// This is the same as [`open`] except that it supports providing the raw
/// pointer to a structure of [`SECURITY_ATTRIBUTES`] which will be passed
/// as the `lpSecurityAttributes` argument to [`CreateFile`].
///
/// # Safety
///
/// The `attrs` argument must either be null or point at a valid instance of
/// the [`SECURITY_ATTRIBUTES`] structure. If the argument is null, the
/// behavior is identical to calling the [`open`] method.
///
/// [`open`]: ClientOptions::open
/// [`CreateFile`]: https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilew
/// [`SECURITY_ATTRIBUTES`]: https://docs.rs/windows-sys/latest/windows_sys/Win32/Security/struct.SECURITY_ATTRIBUTES.html
pub unsafe fn open_with_security_attributes_raw(
&self,
addr: impl AsRef<OsStr>,
attrs: *mut c_void,
) -> io::Result<NamedPipeClient> {
let addr = encode_addr(addr);
let desired_access = {
let mut access = 0;
if self.generic_read {
access |= windows_sys::GENERIC_READ;
}
if self.generic_write {
access |= windows_sys::GENERIC_WRITE;
}
access
};
// NB: We could use a platform specialized `OpenOptions` here, but since
// we have access to windows_sys it ultimately doesn't hurt to use
// `CreateFile` explicitly since it allows the use of our already
// well-structured wide `addr` to pass into CreateFileW.
let h = windows_sys::CreateFileW(
addr.as_ptr(),
desired_access,
0,
attrs as *mut _,
windows_sys::OPEN_EXISTING,
self.get_flags(),
0,
);
if h == windows_sys::INVALID_HANDLE_VALUE {
return Err(io::Error::last_os_error());
}
if matches!(self.pipe_mode, PipeMode::Message) {
let mode = windows_sys::PIPE_READMODE_MESSAGE;
let result =
windows_sys::SetNamedPipeHandleState(h, &mode, ptr::null_mut(), ptr::null_mut());
if result == 0 {
return Err(io::Error::last_os_error());
}
}
NamedPipeClient::from_raw_handle(h as _)
}
fn get_flags(&self) -> u32 {
self.security_qos_flags | windows_sys::FILE_FLAG_OVERLAPPED
}
}
/// The pipe mode of a named pipe.
///
/// Set through [`ServerOptions::pipe_mode`].
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[non_exhaustive]
pub enum PipeMode {
/// Data is written to the pipe as a stream of bytes. The pipe does not
/// distinguish bytes written during different write operations.
///
/// Corresponds to [`PIPE_TYPE_BYTE`].
///
/// [`PIPE_TYPE_BYTE`]: https://docs.rs/windows-sys/latest/windows_sys/Win32/System/Pipes/constant.PIPE_TYPE_BYTE.html
Byte,
/// Data is written to the pipe as a stream of messages. The pipe treats the
/// bytes written during each write operation as a message unit. Any reading
/// on a named pipe returns [`ERROR_MORE_DATA`] when a message is not read
/// completely.
///
/// Corresponds to [`PIPE_TYPE_MESSAGE`].
///
/// [`ERROR_MORE_DATA`]: https://docs.rs/windows-sys/latest/windows_sys/Win32/Foundation/constant.ERROR_MORE_DATA.html
/// [`PIPE_TYPE_MESSAGE`]: https://docs.rs/windows-sys/latest/windows_sys/Win32/System/Pipes/constant.PIPE_TYPE_MESSAGE.html
Message,
}
/// Indicates the end of a named pipe.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[non_exhaustive]
pub enum PipeEnd {
/// The named pipe refers to the client end of a named pipe instance.
///
/// Corresponds to [`PIPE_CLIENT_END`].
///
/// [`PIPE_CLIENT_END`]: https://docs.rs/windows-sys/latest/windows_sys/Win32/System/Pipes/constant.PIPE_CLIENT_END.html
Client,
/// The named pipe refers to the server end of a named pipe instance.
///
/// Corresponds to [`PIPE_SERVER_END`].
///
/// [`PIPE_SERVER_END`]: https://docs.rs/windows-sys/latest/windows_sys/Win32/System/Pipes/constant.PIPE_SERVER_END.html
Server,
}
/// Information about a named pipe.
///
/// Constructed through [`NamedPipeServer::info`] or [`NamedPipeClient::info`].
#[derive(Debug, Clone)]
#[non_exhaustive]
pub struct PipeInfo {
/// Indicates the mode of a named pipe.
pub mode: PipeMode,
/// Indicates the end of a named pipe.
pub end: PipeEnd,
/// The maximum number of instances that can be created for this pipe.
pub max_instances: u32,
/// The number of bytes to reserve for the output buffer.
pub out_buffer_size: u32,
/// The number of bytes to reserve for the input buffer.
pub in_buffer_size: u32,
}
/// Encodes an address so that it is a null-terminated wide string.
fn encode_addr(addr: impl AsRef<OsStr>) -> Box<[u16]> {
let len = addr.as_ref().encode_wide().count();
let mut vec = Vec::with_capacity(len + 1);
vec.extend(addr.as_ref().encode_wide());
vec.push(0);
vec.into_boxed_slice()
}
/// Internal function to get the info out of a raw named pipe.
unsafe fn named_pipe_info(handle: RawHandle) -> io::Result<PipeInfo> {
let mut flags = 0;
let mut out_buffer_size = 0;
let mut in_buffer_size = 0;
let mut max_instances = 0;
let result = windows_sys::GetNamedPipeInfo(
handle as _,
&mut flags,
&mut out_buffer_size,
&mut in_buffer_size,
&mut max_instances,
);
if result == 0 {
return Err(io::Error::last_os_error());
}
let mut end = PipeEnd::Client;
let mut mode = PipeMode::Byte;
if flags & windows_sys::PIPE_SERVER_END != 0 {
end = PipeEnd::Server;
}
if flags & windows_sys::PIPE_TYPE_MESSAGE != 0 {
mode = PipeMode::Message;
}
Ok(PipeInfo {
end,
mode,
out_buffer_size,
in_buffer_size,
max_instances,
})
}