crypto_bigint/uint/modular/constant_mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
use core::{fmt::Debug, marker::PhantomData};
use subtle::{Choice, ConditionallySelectable, ConstantTimeEq, CtOption};
use crate::{Limb, Uint, Zero};
use super::{div_by_2::div_by_2, reduction::montgomery_reduction, Retrieve};
#[cfg(feature = "rand_core")]
use crate::{rand_core::CryptoRngCore, NonZero, Random, RandomMod};
#[cfg(feature = "serde")]
use {
crate::Encoding,
serdect::serde::de::Error,
serdect::serde::{Deserialize, Deserializer, Serialize, Serializer},
};
/// Additions between residues with a constant modulus
mod const_add;
/// Multiplicative inverses of residues with a constant modulus
mod const_inv;
/// Multiplications between residues with a constant modulus
mod const_mul;
/// Negations of residues with a constant modulus
mod const_neg;
/// Exponentiation of residues with a constant modulus
mod const_pow;
/// Subtractions between residues with a constant modulus
mod const_sub;
/// Macros to remove the boilerplate code when dealing with constant moduli.
#[macro_use]
mod macros;
pub use macros::*;
/// The parameters to efficiently go to and from the Montgomery form for a given odd modulus. An easy way to generate these parameters is using the `impl_modulus!` macro. These parameters are constant, so they cannot be set at runtime.
///
/// Unfortunately, `LIMBS` must be generic for now until const generics are stabilized.
pub trait ResidueParams<const LIMBS: usize>:
Copy + Debug + Default + Eq + Send + Sync + 'static
{
/// Number of limbs required to encode a residue
const LIMBS: usize;
/// The constant modulus
const MODULUS: Uint<LIMBS>;
/// Parameter used in Montgomery reduction
const R: Uint<LIMBS>;
/// R^2, used to move into Montgomery form
const R2: Uint<LIMBS>;
/// R^3, used to perform a multiplicative inverse
const R3: Uint<LIMBS>;
/// The lowest limbs of -(MODULUS^-1) mod R
// We only need the LSB because during reduction this value is multiplied modulo 2**Limb::BITS.
const MOD_NEG_INV: Limb;
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
/// A residue mod `MOD`, represented using `LIMBS` limbs. The modulus of this residue is constant, so it cannot be set at runtime.
/// Internally, the value is stored in Montgomery form (multiplied by MOD::R) until it is retrieved.
pub struct Residue<MOD, const LIMBS: usize>
where
MOD: ResidueParams<LIMBS>,
{
montgomery_form: Uint<LIMBS>,
phantom: PhantomData<MOD>,
}
#[cfg(feature = "zeroize")]
impl<MOD: ResidueParams<LIMBS>, const LIMBS: usize> zeroize::DefaultIsZeroes
for Residue<MOD, LIMBS>
{
}
impl<MOD: ResidueParams<LIMBS>, const LIMBS: usize> Residue<MOD, LIMBS> {
/// The representation of 0 mod `MOD`.
pub const ZERO: Self = Self {
montgomery_form: Uint::<LIMBS>::ZERO,
phantom: PhantomData,
};
/// The representation of 1 mod `MOD`.
pub const ONE: Self = Self {
montgomery_form: MOD::R,
phantom: PhantomData,
};
// Internal helper function to generate a residue; this lets us wrap the constructors more cleanly
const fn generate_residue(integer: &Uint<LIMBS>) -> Self {
let product = integer.mul_wide(&MOD::R2);
let montgomery_form =
montgomery_reduction::<LIMBS>(&product, &MOD::MODULUS, MOD::MOD_NEG_INV);
Self {
montgomery_form,
phantom: PhantomData,
}
}
/// Instantiates a new `Residue` that represents this `integer` mod `MOD`.
/// If the modulus represented by `MOD` is not odd, this function will panic; use [`new_checked`][`Residue::new_checked`] if you want to be able to detect an invalid modulus.
pub const fn new(integer: &Uint<LIMBS>) -> Self {
// A valid modulus must be odd
if MOD::MODULUS.ct_is_odd().to_u8() == 0 {
panic!("modulus must be odd");
}
Self::generate_residue(integer)
}
/// Instantiates a new `Residue` that represents this `integer` mod `MOD` if the modulus is odd.
/// Returns a `CtOption` that is `None` if the provided modulus is not odd; this is a safer version of [`new`][`Residue::new`], which can panic.
// TODO: remove this method when we can use `generic_const_exprs.` to ensure the modulus is
// always valid.
pub fn new_checked(integer: &Uint<LIMBS>) -> CtOption<Self> {
// A valid modulus must be odd.
CtOption::new(
Self::generate_residue(integer),
MOD::MODULUS.ct_is_odd().into(),
)
}
/// Retrieves the integer currently encoded in this `Residue`, guaranteed to be reduced.
pub const fn retrieve(&self) -> Uint<LIMBS> {
montgomery_reduction::<LIMBS>(
&(self.montgomery_form, Uint::ZERO),
&MOD::MODULUS,
MOD::MOD_NEG_INV,
)
}
/// Access the `Residue` value in Montgomery form.
pub const fn as_montgomery(&self) -> &Uint<LIMBS> {
&self.montgomery_form
}
/// Mutably access the `Residue` value in Montgomery form.
pub fn as_montgomery_mut(&mut self) -> &mut Uint<LIMBS> {
&mut self.montgomery_form
}
/// Create a `Residue` from a value in Montgomery form.
pub const fn from_montgomery(integer: Uint<LIMBS>) -> Self {
Self {
montgomery_form: integer,
phantom: PhantomData,
}
}
/// Extract the value from the `Residue` in Montgomery form.
pub const fn to_montgomery(&self) -> Uint<LIMBS> {
self.montgomery_form
}
/// Performs the modular division by 2, that is for given `x` returns `y`
/// such that `y * 2 = x mod p`. This means:
/// - if `x` is even, returns `x / 2`,
/// - if `x` is odd, returns `(x + p) / 2`
/// (since the modulus `p` in Montgomery form is always odd, this divides entirely).
pub fn div_by_2(&self) -> Self {
Self {
montgomery_form: div_by_2(&self.montgomery_form, &MOD::MODULUS),
phantom: PhantomData,
}
}
}
impl<MOD: ResidueParams<LIMBS> + Copy, const LIMBS: usize> ConditionallySelectable
for Residue<MOD, LIMBS>
{
fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
Residue {
montgomery_form: Uint::conditional_select(
&a.montgomery_form,
&b.montgomery_form,
choice,
),
phantom: PhantomData,
}
}
}
impl<MOD: ResidueParams<LIMBS>, const LIMBS: usize> ConstantTimeEq for Residue<MOD, LIMBS> {
fn ct_eq(&self, other: &Self) -> Choice {
ConstantTimeEq::ct_eq(&self.montgomery_form, &other.montgomery_form)
}
}
impl<MOD: ResidueParams<LIMBS>, const LIMBS: usize> Default for Residue<MOD, LIMBS> {
fn default() -> Self {
Self::ZERO
}
}
impl<MOD: ResidueParams<LIMBS>, const LIMBS: usize> Zero for Residue<MOD, LIMBS> {
const ZERO: Self = Self::ZERO;
}
#[cfg(feature = "rand_core")]
impl<MOD, const LIMBS: usize> Random for Residue<MOD, LIMBS>
where
MOD: ResidueParams<LIMBS>,
{
#[inline]
fn random(rng: &mut impl CryptoRngCore) -> Self {
Self::new(&Uint::random_mod(rng, &NonZero::from_uint(MOD::MODULUS)))
}
}
impl<MOD: ResidueParams<LIMBS>, const LIMBS: usize> Retrieve for Residue<MOD, LIMBS> {
type Output = Uint<LIMBS>;
fn retrieve(&self) -> Self::Output {
self.retrieve()
}
}
#[cfg(feature = "serde")]
impl<'de, MOD, const LIMBS: usize> Deserialize<'de> for Residue<MOD, LIMBS>
where
MOD: ResidueParams<LIMBS>,
Uint<LIMBS>: Encoding,
{
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
Uint::<LIMBS>::deserialize(deserializer).and_then(|montgomery_form| {
if Uint::ct_lt(&montgomery_form, &MOD::MODULUS).into() {
Ok(Self {
montgomery_form,
phantom: PhantomData,
})
} else {
Err(D::Error::custom("montgomery form must be reduced"))
}
})
}
}
#[cfg(feature = "serde")]
impl<MOD, const LIMBS: usize> Serialize for Residue<MOD, LIMBS>
where
MOD: ResidueParams<LIMBS>,
Uint<LIMBS>: Encoding,
{
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
self.montgomery_form.serialize(serializer)
}
}