curve25519_dalek/backend/vector/packed_simd.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
// -*- mode: rust; -*-
//
// This file is part of curve25519-dalek.
// See LICENSE for licensing information.
//! This module defines wrappers over platform-specific SIMD types to make them
//! more convenient to use.
//!
//! UNSAFETY: Everything in this module assumes that we're running on hardware
//! which supports at least AVX2. This invariant *must* be enforced
//! by the callers of this code.
use core::ops::{Add, AddAssign, BitAnd, BitAndAssign, BitXor, BitXorAssign, Sub};
use curve25519_dalek_derive::unsafe_target_feature;
macro_rules! impl_shared {
(
$ty:ident,
$lane_ty:ident,
$add_intrinsic:ident,
$sub_intrinsic:ident,
$shl_intrinsic:ident,
$shr_intrinsic:ident,
$extract_intrinsic:ident
) => {
#[allow(non_camel_case_types)]
#[derive(Copy, Clone, Debug)]
#[repr(transparent)]
pub struct $ty(core::arch::x86_64::__m256i);
#[unsafe_target_feature("avx2")]
impl From<$ty> for core::arch::x86_64::__m256i {
#[inline]
fn from(value: $ty) -> core::arch::x86_64::__m256i {
value.0
}
}
#[unsafe_target_feature("avx2")]
impl From<core::arch::x86_64::__m256i> for $ty {
#[inline]
fn from(value: core::arch::x86_64::__m256i) -> $ty {
$ty(value)
}
}
#[unsafe_target_feature("avx2")]
impl PartialEq for $ty {
#[inline]
fn eq(&self, rhs: &$ty) -> bool {
unsafe {
// This compares each pair of 8-bit packed integers and returns either 0xFF or
// 0x00 depending on whether they're equal.
//
// So the values are equal if (and only if) this returns a value that's filled
// with only 0xFF.
//
// Pseudocode of what this does:
// self.0
// .bytes()
// .zip(rhs.0.bytes())
// .map(|a, b| if a == b { 0xFF } else { 0x00 })
// .join();
let m = core::arch::x86_64::_mm256_cmpeq_epi8(self.0, rhs.0);
// Now we need to reduce the 256-bit value to something on which we can branch.
//
// This will just take the most significant bit of every 8-bit packed integer
// and build an `i32` out of it. If the values we previously compared were
// equal then all off the most significant bits will be equal to 1, which means
// that this will return 0xFFFFFFFF, which is equal to -1 when represented as
// an `i32`.
core::arch::x86_64::_mm256_movemask_epi8(m) == -1
}
}
}
impl Eq for $ty {}
#[unsafe_target_feature("avx2")]
impl Add for $ty {
type Output = Self;
#[inline]
fn add(self, rhs: $ty) -> Self {
unsafe { core::arch::x86_64::$add_intrinsic(self.0, rhs.0).into() }
}
}
#[allow(clippy::assign_op_pattern)]
#[unsafe_target_feature("avx2")]
impl AddAssign for $ty {
#[inline]
fn add_assign(&mut self, rhs: $ty) {
*self = *self + rhs
}
}
#[unsafe_target_feature("avx2")]
impl Sub for $ty {
type Output = Self;
#[inline]
fn sub(self, rhs: $ty) -> Self {
unsafe { core::arch::x86_64::$sub_intrinsic(self.0, rhs.0).into() }
}
}
#[unsafe_target_feature("avx2")]
impl BitAnd for $ty {
type Output = Self;
#[inline]
fn bitand(self, rhs: $ty) -> Self {
unsafe { core::arch::x86_64::_mm256_and_si256(self.0, rhs.0).into() }
}
}
#[unsafe_target_feature("avx2")]
impl BitXor for $ty {
type Output = Self;
#[inline]
fn bitxor(self, rhs: $ty) -> Self {
unsafe { core::arch::x86_64::_mm256_xor_si256(self.0, rhs.0).into() }
}
}
#[allow(clippy::assign_op_pattern)]
#[unsafe_target_feature("avx2")]
impl BitAndAssign for $ty {
#[inline]
fn bitand_assign(&mut self, rhs: $ty) {
*self = *self & rhs;
}
}
#[allow(clippy::assign_op_pattern)]
#[unsafe_target_feature("avx2")]
impl BitXorAssign for $ty {
#[inline]
fn bitxor_assign(&mut self, rhs: $ty) {
*self = *self ^ rhs;
}
}
#[unsafe_target_feature("avx2")]
#[allow(dead_code)]
impl $ty {
#[inline]
pub fn shl<const N: i32>(self) -> Self {
unsafe { core::arch::x86_64::$shl_intrinsic(self.0, N).into() }
}
#[inline]
pub fn shr<const N: i32>(self) -> Self {
unsafe { core::arch::x86_64::$shr_intrinsic(self.0, N).into() }
}
#[inline]
pub fn extract<const N: i32>(self) -> $lane_ty {
unsafe { core::arch::x86_64::$extract_intrinsic(self.0, N) as $lane_ty }
}
}
};
}
macro_rules! impl_conv {
($src:ident => $($dst:ident),+) => {
$(
#[unsafe_target_feature("avx2")]
impl From<$src> for $dst {
#[inline]
fn from(value: $src) -> $dst {
$dst(value.0)
}
}
)+
}
}
// We define SIMD functionality over packed unsigned integer types. However, all the integer
// intrinsics deal with signed integers. So we cast unsigned to signed, pack it into SIMD, do
// add/sub/shl/shr arithmetic, and finally cast back to unsigned at the end. Why is this equivalent
// to doing the same thing on unsigned integers? Shl/shr is clear, because casting does not change
// the bits of the integer. But what about add/sub? This is due to the following:
//
// 1) Rust uses two's complement to represent signed integers. So we're assured that the values
// we cast into SIMD and extract out at the end are two's complement.
//
// https://doc.rust-lang.org/reference/types/numeric.html
//
// 2) Wrapping add/sub is compatible between two's complement signed and unsigned integers.
// That is, for all x,y: u64 (or any unsigned integer type),
//
// x.wrapping_add(y) == (x as i64).wrapping_add(y as i64) as u64, and
// x.wrapping_sub(y) == (x as i64).wrapping_sub(y as i64) as u64
//
// https://julesjacobs.com/2019/03/20/why-twos-complement-works.html
//
// 3) The add/sub functions we use for SIMD are indeed wrapping. The docs indicate that
// __mm256_add/sub compile to vpaddX/vpsubX instructions where X = w, d, or q depending on
// the bitwidth. From x86 docs:
//
// When an individual result is too large to be represented in X bits (overflow), the
// result is wrapped around and the low X bits are written to the destination operand
// (that is, the carry is ignored).
//
// https://www.felixcloutier.com/x86/paddb:paddw:paddd:paddq
// https://www.felixcloutier.com/x86/psubb:psubw:psubd
// https://www.felixcloutier.com/x86/psubq
impl_shared!(
u64x4,
u64,
_mm256_add_epi64,
_mm256_sub_epi64,
_mm256_slli_epi64,
_mm256_srli_epi64,
_mm256_extract_epi64
);
impl_shared!(
u32x8,
u32,
_mm256_add_epi32,
_mm256_sub_epi32,
_mm256_slli_epi32,
_mm256_srli_epi32,
_mm256_extract_epi32
);
impl_conv!(u64x4 => u32x8);
#[allow(dead_code)]
impl u64x4 {
/// A constified variant of `new`.
///
/// Should only be called from `const` contexts. At runtime `new` is going to be faster.
#[inline]
pub const fn new_const(x0: u64, x1: u64, x2: u64, x3: u64) -> Self {
// SAFETY: Transmuting between an array and a SIMD type is safe
// https://rust-lang.github.io/unsafe-code-guidelines/layout/packed-simd-vectors.html
unsafe { Self(core::mem::transmute([x0, x1, x2, x3])) }
}
/// A constified variant of `splat`.
///
/// Should only be called from `const` contexts. At runtime `splat` is going to be faster.
#[inline]
pub const fn splat_const<const N: u64>() -> Self {
Self::new_const(N, N, N, N)
}
/// Constructs a new instance.
#[unsafe_target_feature("avx2")]
#[inline]
pub fn new(x0: u64, x1: u64, x2: u64, x3: u64) -> u64x4 {
unsafe {
// _mm256_set_epi64 sets the underlying vector in reverse order of the args
u64x4(core::arch::x86_64::_mm256_set_epi64x(
x3 as i64, x2 as i64, x1 as i64, x0 as i64,
))
}
}
/// Constructs a new instance with all of the elements initialized to the given value.
#[unsafe_target_feature("avx2")]
#[inline]
pub fn splat(x: u64) -> u64x4 {
unsafe { u64x4(core::arch::x86_64::_mm256_set1_epi64x(x as i64)) }
}
}
#[allow(dead_code)]
impl u32x8 {
/// A constified variant of `new`.
///
/// Should only be called from `const` contexts. At runtime `new` is going to be faster.
#[allow(clippy::too_many_arguments)]
#[inline]
pub const fn new_const(
x0: u32,
x1: u32,
x2: u32,
x3: u32,
x4: u32,
x5: u32,
x6: u32,
x7: u32,
) -> Self {
// SAFETY: Transmuting between an array and a SIMD type is safe
// https://rust-lang.github.io/unsafe-code-guidelines/layout/packed-simd-vectors.html
unsafe { Self(core::mem::transmute([x0, x1, x2, x3, x4, x5, x6, x7])) }
}
/// A constified variant of `splat`.
///
/// Should only be called from `const` contexts. At runtime `splat` is going to be faster.
#[inline]
pub const fn splat_const<const N: u32>() -> Self {
Self::new_const(N, N, N, N, N, N, N, N)
}
/// Constructs a new instance.
#[allow(clippy::too_many_arguments)]
#[unsafe_target_feature("avx2")]
#[inline]
pub fn new(x0: u32, x1: u32, x2: u32, x3: u32, x4: u32, x5: u32, x6: u32, x7: u32) -> u32x8 {
unsafe {
// _mm256_set_epi32 sets the underlying vector in reverse order of the args
u32x8(core::arch::x86_64::_mm256_set_epi32(
x7 as i32, x6 as i32, x5 as i32, x4 as i32, x3 as i32, x2 as i32, x1 as i32,
x0 as i32,
))
}
}
/// Constructs a new instance with all of the elements initialized to the given value.
#[unsafe_target_feature("avx2")]
#[inline]
pub fn splat(x: u32) -> u32x8 {
unsafe { u32x8(core::arch::x86_64::_mm256_set1_epi32(x as i32)) }
}
}
#[unsafe_target_feature("avx2")]
impl u32x8 {
/// Multiplies the low unsigned 32-bits from each packed 64-bit element
/// and returns the unsigned 64-bit results.
///
/// (This ignores the upper 32-bits from each packed 64-bits!)
#[inline]
pub fn mul32(self, rhs: u32x8) -> u64x4 {
// NOTE: This ignores the upper 32-bits from each packed 64-bits.
unsafe { core::arch::x86_64::_mm256_mul_epu32(self.0, rhs.0).into() }
}
}