parking_lot/mutex.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
// Copyright 2016 Amanieu d'Antras
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
use crate::raw_mutex::RawMutex;
/// A mutual exclusion primitive useful for protecting shared data
///
/// This mutex will block threads waiting for the lock to become available. The
/// mutex can be statically initialized or created by the `new`
/// constructor. Each mutex has a type parameter which represents the data that
/// it is protecting. The data can only be accessed through the RAII guards
/// returned from `lock` and `try_lock`, which guarantees that the data is only
/// ever accessed when the mutex is locked.
///
/// # Fairness
///
/// A typical unfair lock can often end up in a situation where a single thread
/// quickly acquires and releases the same mutex in succession, which can starve
/// other threads waiting to acquire the mutex. While this improves throughput
/// because it doesn't force a context switch when a thread tries to re-acquire
/// a mutex it has just released, this can starve other threads.
///
/// This mutex uses [eventual fairness](https://trac.webkit.org/changeset/203350)
/// to ensure that the lock will be fair on average without sacrificing
/// throughput. This is done by forcing a fair unlock on average every 0.5ms,
/// which will force the lock to go to the next thread waiting for the mutex.
///
/// Additionally, any critical section longer than 1ms will always use a fair
/// unlock, which has a negligible impact on throughput considering the length
/// of the critical section.
///
/// You can also force a fair unlock by calling `MutexGuard::unlock_fair` when
/// unlocking a mutex instead of simply dropping the `MutexGuard`.
///
/// # Differences from the standard library `Mutex`
///
/// - No poisoning, the lock is released normally on panic.
/// - Only requires 1 byte of space, whereas the standard library boxes the
/// `Mutex` due to platform limitations.
/// - Can be statically constructed.
/// - Does not require any drop glue when dropped.
/// - Inline fast path for the uncontended case.
/// - Efficient handling of micro-contention using adaptive spinning.
/// - Allows raw locking & unlocking without a guard.
/// - Supports eventual fairness so that the mutex is fair on average.
/// - Optionally allows making the mutex fair by calling `MutexGuard::unlock_fair`.
///
/// # Examples
///
/// ```
/// use parking_lot::Mutex;
/// use std::sync::{Arc, mpsc::channel};
/// use std::thread;
///
/// const N: usize = 10;
///
/// // Spawn a few threads to increment a shared variable (non-atomically), and
/// // let the main thread know once all increments are done.
/// //
/// // Here we're using an Arc to share memory among threads, and the data inside
/// // the Arc is protected with a mutex.
/// let data = Arc::new(Mutex::new(0));
///
/// let (tx, rx) = channel();
/// for _ in 0..10 {
/// let (data, tx) = (Arc::clone(&data), tx.clone());
/// thread::spawn(move || {
/// // The shared state can only be accessed once the lock is held.
/// // Our non-atomic increment is safe because we're the only thread
/// // which can access the shared state when the lock is held.
/// let mut data = data.lock();
/// *data += 1;
/// if *data == N {
/// tx.send(()).unwrap();
/// }
/// // the lock is unlocked here when `data` goes out of scope.
/// });
/// }
///
/// rx.recv().unwrap();
/// ```
pub type Mutex<T> = lock_api::Mutex<RawMutex, T>;
/// Creates a new mutex in an unlocked state ready for use.
///
/// This allows creating a mutex in a constant context on stable Rust.
pub const fn const_mutex<T>(val: T) -> Mutex<T> {
Mutex::const_new(<RawMutex as lock_api::RawMutex>::INIT, val)
}
/// An RAII implementation of a "scoped lock" of a mutex. When this structure is
/// dropped (falls out of scope), the lock will be unlocked.
///
/// The data protected by the mutex can be accessed through this guard via its
/// `Deref` and `DerefMut` implementations.
pub type MutexGuard<'a, T> = lock_api::MutexGuard<'a, RawMutex, T>;
/// An RAII mutex guard returned by `MutexGuard::map`, which can point to a
/// subfield of the protected data.
///
/// The main difference between `MappedMutexGuard` and `MutexGuard` is that the
/// former doesn't support temporarily unlocking and re-locking, since that
/// could introduce soundness issues if the locked object is modified by another
/// thread.
pub type MappedMutexGuard<'a, T> = lock_api::MappedMutexGuard<'a, RawMutex, T>;
#[cfg(test)]
mod tests {
use crate::{Condvar, Mutex};
use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::mpsc::channel;
use std::sync::Arc;
use std::thread;
#[cfg(feature = "serde")]
use bincode::{deserialize, serialize};
struct Packet<T>(Arc<(Mutex<T>, Condvar)>);
#[derive(Eq, PartialEq, Debug)]
struct NonCopy(i32);
unsafe impl<T: Send> Send for Packet<T> {}
unsafe impl<T> Sync for Packet<T> {}
#[test]
fn smoke() {
let m = Mutex::new(());
drop(m.lock());
drop(m.lock());
}
#[test]
fn lots_and_lots() {
const J: u32 = 1000;
const K: u32 = 3;
let m = Arc::new(Mutex::new(0));
fn inc(m: &Mutex<u32>) {
for _ in 0..J {
*m.lock() += 1;
}
}
let (tx, rx) = channel();
for _ in 0..K {
let tx2 = tx.clone();
let m2 = m.clone();
thread::spawn(move || {
inc(&m2);
tx2.send(()).unwrap();
});
let tx2 = tx.clone();
let m2 = m.clone();
thread::spawn(move || {
inc(&m2);
tx2.send(()).unwrap();
});
}
drop(tx);
for _ in 0..2 * K {
rx.recv().unwrap();
}
assert_eq!(*m.lock(), J * K * 2);
}
#[test]
fn try_lock() {
let m = Mutex::new(());
*m.try_lock().unwrap() = ();
}
#[test]
fn test_into_inner() {
let m = Mutex::new(NonCopy(10));
assert_eq!(m.into_inner(), NonCopy(10));
}
#[test]
fn test_into_inner_drop() {
struct Foo(Arc<AtomicUsize>);
impl Drop for Foo {
fn drop(&mut self) {
self.0.fetch_add(1, Ordering::SeqCst);
}
}
let num_drops = Arc::new(AtomicUsize::new(0));
let m = Mutex::new(Foo(num_drops.clone()));
assert_eq!(num_drops.load(Ordering::SeqCst), 0);
{
let _inner = m.into_inner();
assert_eq!(num_drops.load(Ordering::SeqCst), 0);
}
assert_eq!(num_drops.load(Ordering::SeqCst), 1);
}
#[test]
fn test_get_mut() {
let mut m = Mutex::new(NonCopy(10));
*m.get_mut() = NonCopy(20);
assert_eq!(m.into_inner(), NonCopy(20));
}
#[test]
fn test_mutex_arc_condvar() {
let packet = Packet(Arc::new((Mutex::new(false), Condvar::new())));
let packet2 = Packet(packet.0.clone());
let (tx, rx) = channel();
let _t = thread::spawn(move || {
// wait until parent gets in
rx.recv().unwrap();
let (lock, cvar) = &*packet2.0;
let mut lock = lock.lock();
*lock = true;
cvar.notify_one();
});
let (lock, cvar) = &*packet.0;
let mut lock = lock.lock();
tx.send(()).unwrap();
assert!(!*lock);
while !*lock {
cvar.wait(&mut lock);
}
}
#[test]
fn test_mutex_arc_nested() {
// Tests nested mutexes and access
// to underlying data.
let arc = Arc::new(Mutex::new(1));
let arc2 = Arc::new(Mutex::new(arc));
let (tx, rx) = channel();
let _t = thread::spawn(move || {
let lock = arc2.lock();
let lock2 = lock.lock();
assert_eq!(*lock2, 1);
tx.send(()).unwrap();
});
rx.recv().unwrap();
}
#[test]
fn test_mutex_arc_access_in_unwind() {
let arc = Arc::new(Mutex::new(1));
let arc2 = arc.clone();
let _ = thread::spawn(move || {
struct Unwinder {
i: Arc<Mutex<i32>>,
}
impl Drop for Unwinder {
fn drop(&mut self) {
*self.i.lock() += 1;
}
}
let _u = Unwinder { i: arc2 };
panic!();
})
.join();
let lock = arc.lock();
assert_eq!(*lock, 2);
}
#[test]
fn test_mutex_unsized() {
let mutex: &Mutex<[i32]> = &Mutex::new([1, 2, 3]);
{
let b = &mut *mutex.lock();
b[0] = 4;
b[2] = 5;
}
let comp: &[i32] = &[4, 2, 5];
assert_eq!(&*mutex.lock(), comp);
}
#[test]
fn test_mutexguard_sync() {
fn sync<T: Sync>(_: T) {}
let mutex = Mutex::new(());
sync(mutex.lock());
}
#[test]
fn test_mutex_debug() {
let mutex = Mutex::new(vec![0u8, 10]);
assert_eq!(format!("{:?}", mutex), "Mutex { data: [0, 10] }");
let _lock = mutex.lock();
assert_eq!(format!("{:?}", mutex), "Mutex { data: <locked> }");
}
#[cfg(feature = "serde")]
#[test]
fn test_serde() {
let contents: Vec<u8> = vec![0, 1, 2];
let mutex = Mutex::new(contents.clone());
let serialized = serialize(&mutex).unwrap();
let deserialized: Mutex<Vec<u8>> = deserialize(&serialized).unwrap();
assert_eq!(*(mutex.lock()), *(deserialized.lock()));
assert_eq!(contents, *(deserialized.lock()));
}
}