ring/rsa/keypair.rs
1// Copyright 2015-2016 Brian Smith.
2//
3// Permission to use, copy, modify, and/or distribute this software for any
4// purpose with or without fee is hereby granted, provided that the above
5// copyright notice and this permission notice appear in all copies.
6//
7// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
14
15use super::{
16 padding::{self, RsaEncoding},
17 KeyPairComponents, PublicExponent, PublicKey, PublicKeyComponents, N,
18};
19
20/// RSA PKCS#1 1.5 signatures.
21use crate::{
22 arithmetic::{
23 bigint,
24 montgomery::{R, RR, RRR},
25 LimbSliceError,
26 },
27 bits::BitLength,
28 cpu, digest,
29 error::{self, KeyRejected},
30 io::der,
31 pkcs8, rand, signature,
32};
33
34/// An RSA key pair, used for signing.
35pub struct KeyPair {
36 p: PrivateCrtPrime<P>,
37 q: PrivateCrtPrime<Q>,
38 qInv: bigint::Elem<P, R>,
39 public: PublicKey,
40}
41
42derive_debug_via_field!(KeyPair, stringify!(RsaKeyPair), public);
43
44impl KeyPair {
45 /// Parses an unencrypted PKCS#8-encoded RSA private key.
46 ///
47 /// This will generate a 2048-bit RSA private key of the correct form using
48 /// OpenSSL's command line tool:
49 ///
50 /// ```sh
51 /// openssl genpkey -algorithm RSA \
52 /// -pkeyopt rsa_keygen_bits:2048 \
53 /// -pkeyopt rsa_keygen_pubexp:65537 | \
54 /// openssl pkcs8 -topk8 -nocrypt -outform der > rsa-2048-private-key.pk8
55 /// ```
56 ///
57 /// This will generate a 3072-bit RSA private key of the correct form:
58 ///
59 /// ```sh
60 /// openssl genpkey -algorithm RSA \
61 /// -pkeyopt rsa_keygen_bits:3072 \
62 /// -pkeyopt rsa_keygen_pubexp:65537 | \
63 /// openssl pkcs8 -topk8 -nocrypt -outform der > rsa-3072-private-key.pk8
64 /// ```
65 ///
66 /// Often, keys generated for use in OpenSSL-based software are stored in
67 /// the Base64 “PEM” format without the PKCS#8 wrapper. Such keys can be
68 /// converted to binary PKCS#8 form using the OpenSSL command line tool like
69 /// this:
70 ///
71 /// ```sh
72 /// openssl pkcs8 -topk8 -nocrypt -outform der \
73 /// -in rsa-2048-private-key.pem > rsa-2048-private-key.pk8
74 /// ```
75 ///
76 /// Base64 (“PEM”) PKCS#8-encoded keys can be converted to the binary PKCS#8
77 /// form like this:
78 ///
79 /// ```sh
80 /// openssl pkcs8 -nocrypt -outform der \
81 /// -in rsa-2048-private-key.pem > rsa-2048-private-key.pk8
82 /// ```
83 ///
84 /// See [`Self::from_components`] for more details on how the input is
85 /// validated.
86 ///
87 /// See [RFC 5958] and [RFC 3447 Appendix A.1.2] for more details of the
88 /// encoding of the key.
89 ///
90 /// [NIST SP-800-56B rev. 1]:
91 /// http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br1.pdf
92 ///
93 /// [RFC 3447 Appendix A.1.2]:
94 /// https://tools.ietf.org/html/rfc3447#appendix-A.1.2
95 ///
96 /// [RFC 5958]:
97 /// https://tools.ietf.org/html/rfc5958
98 pub fn from_pkcs8(pkcs8: &[u8]) -> Result<Self, KeyRejected> {
99 const RSA_ENCRYPTION: &[u8] = include_bytes!("../data/alg-rsa-encryption.der");
100 let (der, _) = pkcs8::unwrap_key_(
101 untrusted::Input::from(RSA_ENCRYPTION),
102 pkcs8::Version::V1Only,
103 untrusted::Input::from(pkcs8),
104 )?;
105 Self::from_der(der.as_slice_less_safe())
106 }
107
108 /// Parses an RSA private key that is not inside a PKCS#8 wrapper.
109 ///
110 /// The private key must be encoded as a binary DER-encoded ASN.1
111 /// `RSAPrivateKey` as described in [RFC 3447 Appendix A.1.2]). In all other
112 /// respects, this is just like `from_pkcs8()`. See the documentation for
113 /// `from_pkcs8()` for more details.
114 ///
115 /// It is recommended to use `from_pkcs8()` (with a PKCS#8-encoded key)
116 /// instead.
117 ///
118 /// See [`Self::from_components()`] for more details on how the input is
119 /// validated.
120 ///
121 /// [RFC 3447 Appendix A.1.2]:
122 /// https://tools.ietf.org/html/rfc3447#appendix-A.1.2
123 ///
124 /// [NIST SP-800-56B rev. 1]:
125 /// http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br1.pdf
126 pub fn from_der(input: &[u8]) -> Result<Self, KeyRejected> {
127 untrusted::Input::from(input).read_all(KeyRejected::invalid_encoding(), |input| {
128 der::nested(
129 input,
130 der::Tag::Sequence,
131 KeyRejected::invalid_encoding(),
132 Self::from_der_reader,
133 )
134 })
135 }
136
137 fn from_der_reader(input: &mut untrusted::Reader) -> Result<Self, KeyRejected> {
138 let version = der::small_nonnegative_integer(input)
139 .map_err(|error::Unspecified| KeyRejected::invalid_encoding())?;
140 if version != 0 {
141 return Err(KeyRejected::version_not_supported());
142 }
143
144 fn nonnegative_integer<'a>(
145 input: &mut untrusted::Reader<'a>,
146 ) -> Result<&'a [u8], KeyRejected> {
147 der::nonnegative_integer(input)
148 .map(|input| input.as_slice_less_safe())
149 .map_err(|error::Unspecified| KeyRejected::invalid_encoding())
150 }
151
152 let n = nonnegative_integer(input)?;
153 let e = nonnegative_integer(input)?;
154 let d = nonnegative_integer(input)?;
155 let p = nonnegative_integer(input)?;
156 let q = nonnegative_integer(input)?;
157 let dP = nonnegative_integer(input)?;
158 let dQ = nonnegative_integer(input)?;
159 let qInv = nonnegative_integer(input)?;
160
161 let components = KeyPairComponents {
162 public_key: PublicKeyComponents { n, e },
163 d,
164 p,
165 q,
166 dP,
167 dQ,
168 qInv,
169 };
170
171 Self::from_components(&components)
172 }
173
174 /// Constructs an RSA private key from its big-endian-encoded components.
175 ///
176 /// Only two-prime (not multi-prime) keys are supported. The public modulus
177 /// (n) must be at least 2047 bits. The public modulus must be no larger
178 /// than 4096 bits. It is recommended that the public modulus be exactly
179 /// 2048 or 3072 bits. The public exponent must be at least 65537 and must
180 /// be no more than 33 bits long.
181 ///
182 /// The private key is validated according to [NIST SP-800-56B rev. 1]
183 /// section 6.4.1.4.3, crt_pkv (Intended Exponent-Creation Method Unknown),
184 /// with the following exceptions:
185 ///
186 /// * Section 6.4.1.2.1, Step 1: Neither a target security level nor an
187 /// expected modulus length is provided as a parameter, so checks
188 /// regarding these expectations are not done.
189 /// * Section 6.4.1.2.1, Step 3: Since neither the public key nor the
190 /// expected modulus length is provided as a parameter, the consistency
191 /// check between these values and the private key's value of n isn't
192 /// done.
193 /// * Section 6.4.1.2.1, Step 5: No primality tests are done, both for
194 /// performance reasons and to avoid any side channels that such tests
195 /// would provide.
196 /// * Section 6.4.1.2.1, Step 6, and 6.4.1.4.3, Step 7:
197 /// * *ring* has a slightly looser lower bound for the values of `p`
198 /// and `q` than what the NIST document specifies. This looser lower
199 /// bound matches what most other crypto libraries do. The check might
200 /// be tightened to meet NIST's requirements in the future. Similarly,
201 /// the check that `p` and `q` are not too close together is skipped
202 /// currently, but may be added in the future.
203 /// * The validity of the mathematical relationship of `dP`, `dQ`, `e`
204 /// and `n` is verified only during signing. Some size checks of `d`,
205 /// `dP` and `dQ` are performed at construction, but some NIST checks
206 /// are skipped because they would be expensive and/or they would leak
207 /// information through side channels. If a preemptive check of the
208 /// consistency of `dP`, `dQ`, `e` and `n` with each other is
209 /// necessary, that can be done by signing any message with the key
210 /// pair.
211 ///
212 /// * `d` is not fully validated, neither at construction nor during
213 /// signing. This is OK as far as *ring*'s usage of the key is
214 /// concerned because *ring* never uses the value of `d` (*ring* always
215 /// uses `p`, `q`, `dP` and `dQ` via the Chinese Remainder Theorem,
216 /// instead). However, *ring*'s checks would not be sufficient for
217 /// validating a key pair for use by some other system; that other
218 /// system must check the value of `d` itself if `d` is to be used.
219 pub fn from_components<Public, Private>(
220 components: &KeyPairComponents<Public, Private>,
221 ) -> Result<Self, KeyRejected>
222 where
223 Public: AsRef<[u8]>,
224 Private: AsRef<[u8]>,
225 {
226 let components = KeyPairComponents {
227 public_key: PublicKeyComponents {
228 n: components.public_key.n.as_ref(),
229 e: components.public_key.e.as_ref(),
230 },
231 d: components.d.as_ref(),
232 p: components.p.as_ref(),
233 q: components.q.as_ref(),
234 dP: components.dP.as_ref(),
235 dQ: components.dQ.as_ref(),
236 qInv: components.qInv.as_ref(),
237 };
238 Self::from_components_(&components, cpu::features())
239 }
240
241 fn from_components_(
242 &KeyPairComponents {
243 public_key,
244 d,
245 p,
246 q,
247 dP,
248 dQ,
249 qInv,
250 }: &KeyPairComponents<&[u8]>,
251 cpu_features: cpu::Features,
252 ) -> Result<Self, KeyRejected> {
253 let d = untrusted::Input::from(d);
254 let p = untrusted::Input::from(p);
255 let q = untrusted::Input::from(q);
256 let dP = untrusted::Input::from(dP);
257 let dQ = untrusted::Input::from(dQ);
258 let qInv = untrusted::Input::from(qInv);
259
260 // XXX: Some steps are done out of order, but the NIST steps are worded
261 // in such a way that it is clear that NIST intends for them to be done
262 // in order. TODO: Does this matter at all?
263
264 // 6.4.1.4.3/6.4.1.2.1 - Step 1.
265
266 // Step 1.a is omitted, as explained above.
267
268 // Step 1.b is omitted per above. Instead, we check that the public
269 // modulus is 2048 to `PRIVATE_KEY_PUBLIC_MODULUS_MAX_BITS` bits.
270 // XXX: The maximum limit of 4096 bits is primarily due to lack of
271 // testing of larger key sizes; see, in particular,
272 // https://www.mail-archive.com/openssl-dev@openssl.org/msg44586.html
273 // and
274 // https://www.mail-archive.com/openssl-dev@openssl.org/msg44759.html.
275 // Also, this limit might help with memory management decisions later.
276
277 // Step 1.c. We validate e >= 65537.
278 let n = untrusted::Input::from(public_key.n);
279 let e = untrusted::Input::from(public_key.e);
280 let public_key = PublicKey::from_modulus_and_exponent(
281 n,
282 e,
283 BitLength::from_bits(2048),
284 super::PRIVATE_KEY_PUBLIC_MODULUS_MAX_BITS,
285 PublicExponent::_65537,
286 cpu_features,
287 )?;
288
289 let n_one = public_key.inner().n().oneRR();
290 let n = &public_key.inner().n().value(cpu_features);
291
292 // 6.4.1.4.3 says to skip 6.4.1.2.1 Step 2.
293
294 // 6.4.1.4.3 Step 3.
295
296 // Step 3.a is done below, out of order.
297 // Step 3.b is unneeded since `n_bits` is derived here from `n`.
298
299 // 6.4.1.4.3 says to skip 6.4.1.2.1 Step 4. (We don't need to recover
300 // the prime factors since they are already given.)
301
302 // 6.4.1.4.3 - Step 5.
303
304 // Steps 5.a and 5.b are omitted, as explained above.
305
306 let n_bits = public_key.inner().n().len_bits();
307
308 let p = PrivatePrime::new(p, n_bits, cpu_features)?;
309 let q = PrivatePrime::new(q, n_bits, cpu_features)?;
310
311 // TODO: Step 5.i
312 //
313 // 3.b is unneeded since `n_bits` is derived here from `n`.
314
315 // 6.4.1.4.3 - Step 3.a (out of order).
316 //
317 // Verify that p * q == n. We restrict ourselves to modular
318 // multiplication. We rely on the fact that we've verified
319 // 0 < q < p < n. We check that q and p are close to sqrt(n) and then
320 // assume that these preconditions are enough to let us assume that
321 // checking p * q == 0 (mod n) is equivalent to checking p * q == n.
322 let q_mod_n = q
323 .modulus
324 .to_elem(n)
325 .map_err(|error::Unspecified| KeyRejected::inconsistent_components())?;
326 let p_mod_n = p
327 .modulus
328 .to_elem(n)
329 .map_err(|error::Unspecified| KeyRejected::inconsistent_components())?;
330 let p_mod_n = bigint::elem_mul(n_one, p_mod_n, n);
331 let pq_mod_n = bigint::elem_mul(&q_mod_n, p_mod_n, n);
332 if !pq_mod_n.is_zero() {
333 return Err(KeyRejected::inconsistent_components());
334 }
335
336 // 6.4.1.4.3/6.4.1.2.1 - Step 6.
337
338 // Step 6.a, partial.
339 //
340 // First, validate `2**half_n_bits < d`. Since 2**half_n_bits has a bit
341 // length of half_n_bits + 1, this check gives us 2**half_n_bits <= d,
342 // and knowing d is odd makes the inequality strict.
343 let d = bigint::OwnedModulusValue::<D>::from_be_bytes(d)
344 .map_err(|_| KeyRejected::invalid_component())?;
345 if !(n_bits.half_rounded_up() < d.len_bits()) {
346 return Err(KeyRejected::inconsistent_components());
347 }
348 // XXX: This check should be `d < LCM(p - 1, q - 1)`, but we don't have
349 // a good way of calculating LCM, so it is omitted, as explained above.
350 d.verify_less_than(n)
351 .map_err(|error::Unspecified| KeyRejected::inconsistent_components())?;
352
353 // Step 6.b is omitted as explained above.
354
355 let pm = &p.modulus.modulus(cpu_features);
356
357 // 6.4.1.4.3 - Step 7.
358
359 // Step 7.c.
360 let qInv = bigint::Elem::from_be_bytes_padded(qInv, pm)
361 .map_err(|error::Unspecified| KeyRejected::invalid_component())?;
362
363 // Steps 7.d and 7.e are omitted per the documentation above, and
364 // because we don't (in the long term) have a good way to do modulo
365 // with an even modulus.
366
367 // Step 7.f.
368 let qInv = bigint::elem_mul(p.oneRR.as_ref(), qInv, pm);
369 let q_mod_p = bigint::elem_reduced(pm.alloc_zero(), &q_mod_n, pm, q.modulus.len_bits());
370 let q_mod_p = bigint::elem_mul(p.oneRR.as_ref(), q_mod_p, pm);
371 bigint::verify_inverses_consttime(&qInv, q_mod_p, pm)
372 .map_err(|error::Unspecified| KeyRejected::inconsistent_components())?;
373
374 // This should never fail since `n` and `e` were validated above.
375
376 let p = PrivateCrtPrime::new(p, dP, cpu_features)?;
377 let q = PrivateCrtPrime::new(q, dQ, cpu_features)?;
378
379 Ok(Self {
380 p,
381 q,
382 qInv,
383 public: public_key,
384 })
385 }
386
387 /// Returns a reference to the public key.
388 pub fn public(&self) -> &PublicKey {
389 &self.public
390 }
391
392 /// Returns the length in bytes of the key pair's public modulus.
393 ///
394 /// A signature has the same length as the public modulus.
395 #[deprecated = "Use `public().modulus_len()`"]
396 #[inline]
397 pub fn public_modulus_len(&self) -> usize {
398 self.public().modulus_len()
399 }
400}
401
402impl signature::KeyPair for KeyPair {
403 type PublicKey = PublicKey;
404
405 fn public_key(&self) -> &Self::PublicKey {
406 self.public()
407 }
408}
409
410struct PrivatePrime<M> {
411 modulus: bigint::OwnedModulus<M>,
412 oneRR: bigint::One<M, RR>,
413}
414
415impl<M> PrivatePrime<M> {
416 fn new(
417 p: untrusted::Input,
418 n_bits: BitLength,
419 cpu_features: cpu::Features,
420 ) -> Result<Self, KeyRejected> {
421 let p = bigint::OwnedModulusValue::from_be_bytes(p)?;
422
423 // 5.c / 5.g:
424 //
425 // TODO: First, stop if `p < (√2) * 2**((nBits/2) - 1)`.
426 // TODO: First, stop if `q < (√2) * 2**((nBits/2) - 1)`.
427 //
428 // Second, stop if `p > 2**(nBits/2) - 1`.
429 // Second, stop if `q > 2**(nBits/2) - 1`.
430 if p.len_bits() != n_bits.half_rounded_up() {
431 return Err(KeyRejected::inconsistent_components());
432 }
433
434 if p.len_bits().as_bits() % 512 != 0 {
435 return Err(KeyRejected::private_modulus_len_not_multiple_of_512_bits());
436 }
437
438 // TODO: Step 5.d: Verify GCD(p - 1, e) == 1.
439 // TODO: Step 5.h: Verify GCD(q - 1, e) == 1.
440
441 // Steps 5.e and 5.f are omitted as explained above.
442 let p = bigint::OwnedModulus::from(p);
443 let pm = p.modulus(cpu_features);
444 let oneRR = bigint::One::newRR(pm.alloc_zero(), &pm);
445
446 Ok(Self { modulus: p, oneRR })
447 }
448}
449
450struct PrivateCrtPrime<M> {
451 modulus: bigint::OwnedModulus<M>,
452 oneRRR: bigint::One<M, RRR>,
453 exponent: bigint::PrivateExponent,
454}
455
456impl<M> PrivateCrtPrime<M> {
457 /// Constructs a `PrivateCrtPrime` from the private prime `p` and `dP` where
458 /// dP == d % (p - 1).
459 fn new(
460 p: PrivatePrime<M>,
461 dP: untrusted::Input,
462 cpu_features: cpu::Features,
463 ) -> Result<Self, KeyRejected> {
464 let m = &p.modulus.modulus(cpu_features);
465 // [NIST SP-800-56B rev. 1] 6.4.1.4.3 - Steps 7.a & 7.b.
466 let dP = bigint::PrivateExponent::from_be_bytes_padded(dP, m)
467 .map_err(|error::Unspecified| KeyRejected::inconsistent_components())?;
468
469 // XXX: Steps 7.d and 7.e are omitted. We don't check that
470 // `dP == d % (p - 1)` because we don't (in the long term) have a good
471 // way to do modulo with an even modulus. Instead we just check that
472 // `1 <= dP < p - 1`. We'll check it, to some unknown extent, when we
473 // do the private key operation, since we verify that the result of the
474 // private key operation using the CRT parameters is consistent with `n`
475 // and `e`. TODO: Either prove that what we do is sufficient, or make
476 // it so.
477
478 let oneRRR = bigint::One::newRRR(p.oneRR, m);
479
480 Ok(Self {
481 modulus: p.modulus,
482 oneRRR,
483 exponent: dP,
484 })
485 }
486}
487
488fn elem_exp_consttime<M>(
489 c: &bigint::Elem<N>,
490 p: &PrivateCrtPrime<M>,
491 other_prime_len_bits: BitLength,
492 cpu_features: cpu::Features,
493) -> Result<bigint::Elem<M>, error::Unspecified> {
494 let m = &p.modulus.modulus(cpu_features);
495 bigint::elem_exp_consttime(
496 m.alloc_zero(),
497 c,
498 &p.oneRRR,
499 &p.exponent,
500 m,
501 other_prime_len_bits,
502 )
503 .map_err(error::erase::<LimbSliceError>)
504}
505
506// Type-level representations of the different moduli used in RSA signing, in
507// addition to `super::N`. See `super::bigint`'s modulue-level documentation.
508
509enum P {}
510
511enum Q {}
512
513enum D {}
514
515impl KeyPair {
516 /// Computes the signature of `msg` and writes it into `signature`.
517 ///
518 /// `msg` is digested using the digest algorithm from `padding_alg` and the
519 /// digest is then padded using the padding algorithm from `padding_alg`.
520 ///
521 /// The signature it written into `signature`; `signature`'s length must be
522 /// exactly the length returned by `self::public().modulus_len()` or else
523 /// an error will be returned. On failure, `signature` may contain
524 /// intermediate results, but won't contain anything that would endanger the
525 /// private key.
526 ///
527 /// `rng` may be used to randomize the padding (e.g. for PSS).
528 ///
529 /// Many other crypto libraries have signing functions that takes a
530 /// precomputed digest as input, instead of the message to digest. This
531 /// function does *not* take a precomputed digest; instead, `sign`
532 /// calculates the digest itself.
533 pub fn sign(
534 &self,
535 padding_alg: &'static dyn RsaEncoding,
536 rng: &dyn rand::SecureRandom,
537 msg: &[u8],
538 signature: &mut [u8],
539 ) -> Result<(), error::Unspecified> {
540 let cpu_features = cpu::features();
541
542 if signature.len() != self.public().modulus_len() {
543 return Err(error::Unspecified);
544 }
545
546 let m_hash = digest::digest(padding_alg.digest_alg(), msg);
547
548 // Use the output buffer as the scratch space for the signature to
549 // reduce the required stack space.
550 padding::encode(
551 padding_alg,
552 m_hash,
553 signature,
554 self.public().inner().n().len_bits(),
555 rng,
556 )?;
557
558 // RFC 8017 Section 5.1.2: RSADP, using the Chinese Remainder Theorem
559 // with Garner's algorithm.
560
561 // Steps 1 and 2.
562 let m = self.private_exponentiate(signature, cpu_features)?;
563
564 // Step 3.
565 m.fill_be_bytes(signature);
566
567 Ok(())
568 }
569
570 /// Returns base**d (mod n).
571 ///
572 /// This does not return or write any intermediate results into any buffers
573 /// that are provided by the caller so that no intermediate state will be
574 /// leaked that would endanger the private key.
575 ///
576 /// Panics if `in_out` is not `self.public().modulus_len()`.
577 fn private_exponentiate(
578 &self,
579 base: &[u8],
580 cpu_features: cpu::Features,
581 ) -> Result<bigint::Elem<N>, error::Unspecified> {
582 assert_eq!(base.len(), self.public().modulus_len());
583
584 // RFC 8017 Section 5.1.2: RSADP, using the Chinese Remainder Theorem
585 // with Garner's algorithm.
586
587 let n = &self.public.inner().n().value(cpu_features);
588 let n_one = self.public.inner().n().oneRR();
589
590 // Step 1. The value zero is also rejected.
591 let base = bigint::Elem::from_be_bytes_padded(untrusted::Input::from(base), n)?;
592
593 // Step 2
594 let c = base;
595
596 // Step 2.b.i.
597 let q_bits = self.q.modulus.len_bits();
598 let m_1 = elem_exp_consttime(&c, &self.p, q_bits, cpu_features)?;
599 let m_2 = elem_exp_consttime(&c, &self.q, self.p.modulus.len_bits(), cpu_features)?;
600
601 // Step 2.b.ii isn't needed since there are only two primes.
602
603 // Step 2.b.iii.
604 let h = {
605 let p = &self.p.modulus.modulus(cpu_features);
606 let m_2 = bigint::elem_reduced_once(p.alloc_zero(), &m_2, p, q_bits);
607 let m_1_minus_m_2 = bigint::elem_sub(m_1, &m_2, p);
608 bigint::elem_mul(&self.qInv, m_1_minus_m_2, p)
609 };
610
611 // Step 2.b.iv. The reduction in the modular multiplication isn't
612 // necessary because `h < p` and `p * q == n` implies `h * q < n`.
613 // Modular arithmetic is used simply to avoid implementing
614 // non-modular arithmetic.
615 let p_bits = self.p.modulus.len_bits();
616 let h = bigint::elem_widen(n.alloc_zero(), h, n, p_bits)?;
617 let q_mod_n = self.q.modulus.to_elem(n)?;
618 let q_mod_n = bigint::elem_mul(n_one, q_mod_n, n);
619 let q_times_h = bigint::elem_mul(&q_mod_n, h, n);
620 let m_2 = bigint::elem_widen(n.alloc_zero(), m_2, n, q_bits)?;
621 let m = bigint::elem_add(m_2, q_times_h, n);
622
623 // Step 2.b.v isn't needed since there are only two primes.
624
625 // Verify the result to protect against fault attacks as described
626 // in "On the Importance of Checking Cryptographic Protocols for
627 // Faults" by Dan Boneh, Richard A. DeMillo, and Richard J. Lipton.
628 // This check is cheap assuming `e` is small, which is ensured during
629 // `KeyPair` construction. Note that this is the only validation of `e`
630 // that is done other than basic checks on its size, oddness, and
631 // minimum value, since the relationship of `e` to `d`, `p`, and `q` is
632 // not verified during `KeyPair` construction.
633 {
634 let verify = n.alloc_zero();
635 let verify = self
636 .public
637 .inner()
638 .exponentiate_elem(verify, &m, cpu_features);
639 bigint::elem_verify_equal_consttime(&verify, &c)?;
640 }
641
642 // Step 3 will be done by the caller.
643
644 Ok(m)
645 }
646}
647
648#[cfg(test)]
649mod tests {
650 use super::*;
651 use crate::testutil as test;
652 use alloc::vec;
653
654 #[test]
655 fn test_rsakeypair_private_exponentiate() {
656 let cpu = cpu::features();
657 test::run(
658 test_vector_file!("keypair_private_exponentiate_tests.txt"),
659 |section, test_case| {
660 assert_eq!(section, "");
661
662 let key = test_case.consume_bytes("Key");
663 let key = KeyPair::from_pkcs8(&key).unwrap();
664 let test_cases = &[
665 test_case.consume_bytes("p"),
666 test_case.consume_bytes("p_plus_1"),
667 test_case.consume_bytes("p_minus_1"),
668 test_case.consume_bytes("q"),
669 test_case.consume_bytes("q_plus_1"),
670 test_case.consume_bytes("q_minus_1"),
671 ];
672 for test_case in test_cases {
673 // THe call to `elem_verify_equal_consttime` will cause
674 // `private_exponentiate` to fail if the computation is
675 // incorrect.
676 let mut padded = vec![0; key.public.modulus_len()];
677 let zeroes = padded.len() - test_case.len();
678 padded[zeroes..].copy_from_slice(test_case);
679 let _: bigint::Elem<_> = key.private_exponentiate(&padded, cpu).unwrap();
680 }
681 Ok(())
682 },
683 );
684 }
685}