rustls/conn.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
use alloc::boxed::Box;
use core::fmt::Debug;
use core::mem;
use core::ops::{Deref, DerefMut, Range};
#[cfg(feature = "std")]
use std::io;
use crate::common_state::{CommonState, Context, IoState, State, DEFAULT_BUFFER_LIMIT};
use crate::enums::{AlertDescription, ContentType, ProtocolVersion};
use crate::error::{Error, PeerMisbehaved};
use crate::log::trace;
use crate::msgs::deframer::buffers::{BufferProgress, DeframerVecBuffer, Delocator, Locator};
use crate::msgs::deframer::handshake::HandshakeDeframer;
use crate::msgs::deframer::DeframerIter;
use crate::msgs::handshake::Random;
use crate::msgs::message::{InboundPlainMessage, Message, MessagePayload};
use crate::record_layer::Decrypted;
use crate::suites::{ExtractedSecrets, PartiallyExtractedSecrets};
use crate::vecbuf::ChunkVecBuffer;
pub(crate) mod unbuffered;
#[cfg(feature = "std")]
mod connection {
use alloc::vec::Vec;
use core::fmt::Debug;
use core::ops::{Deref, DerefMut};
use std::io;
use crate::common_state::{CommonState, IoState};
use crate::error::Error;
use crate::msgs::message::OutboundChunks;
use crate::suites::ExtractedSecrets;
use crate::vecbuf::ChunkVecBuffer;
use crate::ConnectionCommon;
/// A client or server connection.
#[derive(Debug)]
pub enum Connection {
/// A client connection
Client(crate::client::ClientConnection),
/// A server connection
Server(crate::server::ServerConnection),
}
impl Connection {
/// Read TLS content from `rd`.
///
/// See [`ConnectionCommon::read_tls()`] for more information.
pub fn read_tls(&mut self, rd: &mut dyn io::Read) -> Result<usize, io::Error> {
match self {
Self::Client(conn) => conn.read_tls(rd),
Self::Server(conn) => conn.read_tls(rd),
}
}
/// Writes TLS messages to `wr`.
///
/// See [`ConnectionCommon::write_tls()`] for more information.
pub fn write_tls(&mut self, wr: &mut dyn io::Write) -> Result<usize, io::Error> {
self.sendable_tls.write_to(wr)
}
/// Returns an object that allows reading plaintext.
pub fn reader(&mut self) -> Reader<'_> {
match self {
Self::Client(conn) => conn.reader(),
Self::Server(conn) => conn.reader(),
}
}
/// Returns an object that allows writing plaintext.
pub fn writer(&mut self) -> Writer<'_> {
match self {
Self::Client(conn) => Writer::new(&mut **conn),
Self::Server(conn) => Writer::new(&mut **conn),
}
}
/// Processes any new packets read by a previous call to [`Connection::read_tls`].
///
/// See [`ConnectionCommon::process_new_packets()`] for more information.
pub fn process_new_packets(&mut self) -> Result<IoState, Error> {
match self {
Self::Client(conn) => conn.process_new_packets(),
Self::Server(conn) => conn.process_new_packets(),
}
}
/// Derives key material from the agreed connection secrets.
///
/// See [`ConnectionCommon::export_keying_material()`] for more information.
pub fn export_keying_material<T: AsMut<[u8]>>(
&self,
output: T,
label: &[u8],
context: Option<&[u8]>,
) -> Result<T, Error> {
match self {
Self::Client(conn) => conn.export_keying_material(output, label, context),
Self::Server(conn) => conn.export_keying_material(output, label, context),
}
}
/// This function uses `io` to complete any outstanding IO for this connection.
///
/// See [`ConnectionCommon::complete_io()`] for more information.
pub fn complete_io<T>(&mut self, io: &mut T) -> Result<(usize, usize), io::Error>
where
Self: Sized,
T: io::Read + io::Write,
{
match self {
Self::Client(conn) => conn.complete_io(io),
Self::Server(conn) => conn.complete_io(io),
}
}
/// Extract secrets, so they can be used when configuring kTLS, for example.
/// Should be used with care as it exposes secret key material.
pub fn dangerous_extract_secrets(self) -> Result<ExtractedSecrets, Error> {
match self {
Self::Client(client) => client.dangerous_extract_secrets(),
Self::Server(server) => server.dangerous_extract_secrets(),
}
}
/// Sets a limit on the internal buffers
///
/// See [`ConnectionCommon::set_buffer_limit()`] for more information.
pub fn set_buffer_limit(&mut self, limit: Option<usize>) {
match self {
Self::Client(client) => client.set_buffer_limit(limit),
Self::Server(server) => server.set_buffer_limit(limit),
}
}
/// Sends a TLS1.3 `key_update` message to refresh a connection's keys
///
/// See [`ConnectionCommon::refresh_traffic_keys()`] for more information.
pub fn refresh_traffic_keys(&mut self) -> Result<(), Error> {
match self {
Self::Client(client) => client.refresh_traffic_keys(),
Self::Server(server) => server.refresh_traffic_keys(),
}
}
}
impl Deref for Connection {
type Target = CommonState;
fn deref(&self) -> &Self::Target {
match self {
Self::Client(conn) => &conn.core.common_state,
Self::Server(conn) => &conn.core.common_state,
}
}
}
impl DerefMut for Connection {
fn deref_mut(&mut self) -> &mut Self::Target {
match self {
Self::Client(conn) => &mut conn.core.common_state,
Self::Server(conn) => &mut conn.core.common_state,
}
}
}
/// A structure that implements [`std::io::Read`] for reading plaintext.
pub struct Reader<'a> {
pub(super) received_plaintext: &'a mut ChunkVecBuffer,
pub(super) has_received_close_notify: bool,
pub(super) has_seen_eof: bool,
}
impl Reader<'_> {
/// Check the connection's state if no bytes are available for reading.
fn check_no_bytes_state(&self) -> io::Result<()> {
match (self.has_received_close_notify, self.has_seen_eof) {
// cleanly closed; don't care about TCP EOF: express this as Ok(0)
(true, _) => Ok(()),
// unclean closure
(false, true) => Err(io::Error::new(
io::ErrorKind::UnexpectedEof,
UNEXPECTED_EOF_MESSAGE,
)),
// connection still going, but needs more data: signal `WouldBlock` so that
// the caller knows this
(false, false) => Err(io::ErrorKind::WouldBlock.into()),
}
}
}
impl io::Read for Reader<'_> {
/// Obtain plaintext data received from the peer over this TLS connection.
///
/// If the peer closes the TLS session cleanly, this returns `Ok(0)` once all
/// the pending data has been read. No further data can be received on that
/// connection, so the underlying TCP connection should be half-closed too.
///
/// If the peer closes the TLS session uncleanly (a TCP EOF without sending a
/// `close_notify` alert) this function returns a `std::io::Error` of type
/// `ErrorKind::UnexpectedEof` once any pending data has been read.
///
/// Note that support for `close_notify` varies in peer TLS libraries: many do not
/// support it and uncleanly close the TCP connection (this might be
/// vulnerable to truncation attacks depending on the application protocol).
/// This means applications using rustls must both handle EOF
/// from this function, *and* unexpected EOF of the underlying TCP connection.
///
/// If there are no bytes to read, this returns `Err(ErrorKind::WouldBlock.into())`.
///
/// You may learn the number of bytes available at any time by inspecting
/// the return of [`Connection::process_new_packets`].
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
let len = self.received_plaintext.read(buf)?;
if len > 0 || buf.is_empty() {
return Ok(len);
}
self.check_no_bytes_state()
.map(|()| len)
}
/// Obtain plaintext data received from the peer over this TLS connection.
///
/// If the peer closes the TLS session, this returns `Ok(())` without filling
/// any more of the buffer once all the pending data has been read. No further
/// data can be received on that connection, so the underlying TCP connection
/// should be half-closed too.
///
/// If the peer closes the TLS session uncleanly (a TCP EOF without sending a
/// `close_notify` alert) this function returns a `std::io::Error` of type
/// `ErrorKind::UnexpectedEof` once any pending data has been read.
///
/// Note that support for `close_notify` varies in peer TLS libraries: many do not
/// support it and uncleanly close the TCP connection (this might be
/// vulnerable to truncation attacks depending on the application protocol).
/// This means applications using rustls must both handle EOF
/// from this function, *and* unexpected EOF of the underlying TCP connection.
///
/// If there are no bytes to read, this returns `Err(ErrorKind::WouldBlock.into())`.
///
/// You may learn the number of bytes available at any time by inspecting
/// the return of [`Connection::process_new_packets`].
#[cfg(read_buf)]
fn read_buf(&mut self, mut cursor: core::io::BorrowedCursor<'_>) -> io::Result<()> {
let before = cursor.written();
self.received_plaintext
.read_buf(cursor.reborrow())?;
let len = cursor.written() - before;
if len > 0 || cursor.capacity() == 0 {
return Ok(());
}
self.check_no_bytes_state()
}
}
const UNEXPECTED_EOF_MESSAGE: &str =
"peer closed connection without sending TLS close_notify: \
https://docs.rs/rustls/latest/rustls/manual/_03_howto/index.html#unexpected-eof";
/// A structure that implements [`std::io::Write`] for writing plaintext.
pub struct Writer<'a> {
sink: &'a mut dyn PlaintextSink,
}
impl<'a> Writer<'a> {
/// Create a new Writer.
///
/// This is not an external interface. Get one of these objects
/// from [`Connection::writer`].
pub(crate) fn new(sink: &'a mut dyn PlaintextSink) -> Self {
Writer { sink }
}
}
impl io::Write for Writer<'_> {
/// Send the plaintext `buf` to the peer, encrypting
/// and authenticating it. Once this function succeeds
/// you should call [`Connection::write_tls`] which will output the
/// corresponding TLS records.
///
/// This function buffers plaintext sent before the
/// TLS handshake completes, and sends it as soon
/// as it can. See [`ConnectionCommon::set_buffer_limit`] to control
/// the size of this buffer.
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.sink.write(buf)
}
fn write_vectored(&mut self, bufs: &[io::IoSlice<'_>]) -> io::Result<usize> {
self.sink.write_vectored(bufs)
}
fn flush(&mut self) -> io::Result<()> {
self.sink.flush()
}
}
/// Internal trait implemented by the [`ServerConnection`]/[`ClientConnection`]
/// allowing them to be the subject of a [`Writer`].
///
/// [`ServerConnection`]: crate::ServerConnection
/// [`ClientConnection`]: crate::ClientConnection
pub(crate) trait PlaintextSink {
fn write(&mut self, buf: &[u8]) -> io::Result<usize>;
fn write_vectored(&mut self, bufs: &[io::IoSlice<'_>]) -> io::Result<usize>;
fn flush(&mut self) -> io::Result<()>;
}
impl<T> PlaintextSink for ConnectionCommon<T> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
let len = self
.core
.common_state
.buffer_plaintext(buf.into(), &mut self.sendable_plaintext);
self.core.maybe_refresh_traffic_keys();
Ok(len)
}
fn write_vectored(&mut self, bufs: &[io::IoSlice<'_>]) -> io::Result<usize> {
let payload_owner: Vec<&[u8]>;
let payload = match bufs.len() {
0 => return Ok(0),
1 => OutboundChunks::Single(bufs[0].deref()),
_ => {
payload_owner = bufs
.iter()
.map(|io_slice| io_slice.deref())
.collect();
OutboundChunks::new(&payload_owner)
}
};
let len = self
.core
.common_state
.buffer_plaintext(payload, &mut self.sendable_plaintext);
self.core.maybe_refresh_traffic_keys();
Ok(len)
}
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
}
#[cfg(feature = "std")]
pub use connection::{Connection, Reader, Writer};
#[derive(Debug)]
pub(crate) struct ConnectionRandoms {
pub(crate) client: [u8; 32],
pub(crate) server: [u8; 32],
}
impl ConnectionRandoms {
pub(crate) fn new(client: Random, server: Random) -> Self {
Self {
client: client.0,
server: server.0,
}
}
}
/// Interface shared by client and server connections.
pub struct ConnectionCommon<Data> {
pub(crate) core: ConnectionCore<Data>,
deframer_buffer: DeframerVecBuffer,
sendable_plaintext: ChunkVecBuffer,
}
impl<Data> ConnectionCommon<Data> {
/// Processes any new packets read by a previous call to
/// [`Connection::read_tls`].
///
/// Errors from this function relate to TLS protocol errors, and
/// are fatal to the connection. Future calls after an error will do
/// no new work and will return the same error. After an error is
/// received from [`process_new_packets`], you should not call [`read_tls`]
/// any more (it will fill up buffers to no purpose). However, you
/// may call the other methods on the connection, including `write`,
/// `send_close_notify`, and `write_tls`. Most likely you will want to
/// call `write_tls` to send any alerts queued by the error and then
/// close the underlying connection.
///
/// Success from this function comes with some sundry state data
/// about the connection.
///
/// [`read_tls`]: Connection::read_tls
/// [`process_new_packets`]: Connection::process_new_packets
#[inline]
pub fn process_new_packets(&mut self) -> Result<IoState, Error> {
self.core
.process_new_packets(&mut self.deframer_buffer, &mut self.sendable_plaintext)
}
/// Derives key material from the agreed connection secrets.
///
/// This function fills in `output` with `output.len()` bytes of key
/// material derived from the master session secret using `label`
/// and `context` for diversification. Ownership of the buffer is taken
/// by the function and returned via the Ok result to ensure no key
/// material leaks if the function fails.
///
/// See RFC5705 for more details on what this does and is for.
///
/// For TLS1.3 connections, this function does not use the
/// "early" exporter at any point.
///
/// This function fails if called prior to the handshake completing;
/// check with [`CommonState::is_handshaking`] first.
///
/// This function fails if `output.len()` is zero.
#[inline]
pub fn export_keying_material<T: AsMut<[u8]>>(
&self,
output: T,
label: &[u8],
context: Option<&[u8]>,
) -> Result<T, Error> {
self.core
.export_keying_material(output, label, context)
}
/// Extract secrets, so they can be used when configuring kTLS, for example.
/// Should be used with care as it exposes secret key material.
pub fn dangerous_extract_secrets(self) -> Result<ExtractedSecrets, Error> {
if !self.enable_secret_extraction {
return Err(Error::General("Secret extraction is disabled".into()));
}
let st = self.core.state?;
let record_layer = self.core.common_state.record_layer;
let PartiallyExtractedSecrets { tx, rx } = st.extract_secrets()?;
Ok(ExtractedSecrets {
tx: (record_layer.write_seq(), tx),
rx: (record_layer.read_seq(), rx),
})
}
/// Sets a limit on the internal buffers used to buffer
/// unsent plaintext (prior to completing the TLS handshake)
/// and unsent TLS records. This limit acts only on application
/// data written through [`Connection::writer`].
///
/// By default the limit is 64KB. The limit can be set
/// at any time, even if the current buffer use is higher.
///
/// [`None`] means no limit applies, and will mean that written
/// data is buffered without bound -- it is up to the application
/// to appropriately schedule its plaintext and TLS writes to bound
/// memory usage.
///
/// For illustration: `Some(1)` means a limit of one byte applies:
/// [`Connection::writer`] will accept only one byte, encrypt it and
/// add a TLS header. Once this is sent via [`Connection::write_tls`],
/// another byte may be sent.
///
/// # Internal write-direction buffering
/// rustls has two buffers whose size are bounded by this setting:
///
/// ## Buffering of unsent plaintext data prior to handshake completion
///
/// Calls to [`Connection::writer`] before or during the handshake
/// are buffered (up to the limit specified here). Once the
/// handshake completes this data is encrypted and the resulting
/// TLS records are added to the outgoing buffer.
///
/// ## Buffering of outgoing TLS records
///
/// This buffer is used to store TLS records that rustls needs to
/// send to the peer. It is used in these two circumstances:
///
/// - by [`Connection::process_new_packets`] when a handshake or alert
/// TLS record needs to be sent.
/// - by [`Connection::writer`] post-handshake: the plaintext is
/// encrypted and the resulting TLS record is buffered.
///
/// This buffer is emptied by [`Connection::write_tls`].
///
/// [`Connection::writer`]: crate::Connection::writer
/// [`Connection::write_tls`]: crate::Connection::write_tls
/// [`Connection::process_new_packets`]: crate::Connection::process_new_packets
pub fn set_buffer_limit(&mut self, limit: Option<usize>) {
self.sendable_plaintext.set_limit(limit);
self.sendable_tls.set_limit(limit);
}
/// Sends a TLS1.3 `key_update` message to refresh a connection's keys.
///
/// This call refreshes our encryption keys. Once the peer receives the message,
/// it refreshes _its_ encryption and decryption keys and sends a response.
/// Once we receive that response, we refresh our decryption keys to match.
/// At the end of this process, keys in both directions have been refreshed.
///
/// Note that this process does not happen synchronously: this call just
/// arranges that the `key_update` message will be included in the next
/// `write_tls` output.
///
/// This fails with `Error::HandshakeNotComplete` if called before the initial
/// handshake is complete, or if a version prior to TLS1.3 is negotiated.
///
/// # Usage advice
/// Note that other implementations (including rustls) may enforce limits on
/// the number of `key_update` messages allowed on a given connection to prevent
/// denial of service. Therefore, this should be called sparingly.
///
/// rustls implicitly and automatically refreshes traffic keys when needed
/// according to the selected cipher suite's cryptographic constraints. There
/// is therefore no need to call this manually to avoid cryptographic keys
/// "wearing out".
///
/// The main reason to call this manually is to roll keys when it is known
/// a connection will be idle for a long period.
pub fn refresh_traffic_keys(&mut self) -> Result<(), Error> {
self.core.refresh_traffic_keys()
}
}
#[cfg(feature = "std")]
impl<Data> ConnectionCommon<Data> {
/// Returns an object that allows reading plaintext.
pub fn reader(&mut self) -> Reader<'_> {
let common = &mut self.core.common_state;
Reader {
received_plaintext: &mut common.received_plaintext,
// Are we done? i.e., have we processed all received messages, and received a
// close_notify to indicate that no new messages will arrive?
has_received_close_notify: common.has_received_close_notify,
has_seen_eof: common.has_seen_eof,
}
}
/// Returns an object that allows writing plaintext.
pub fn writer(&mut self) -> Writer<'_> {
Writer::new(self)
}
/// This function uses `io` to complete any outstanding IO for
/// this connection.
///
/// This is a convenience function which solely uses other parts
/// of the public API.
///
/// What this means depends on the connection state:
///
/// - If the connection [`is_handshaking`], then IO is performed until
/// the handshake is complete.
/// - Otherwise, if [`wants_write`] is true, [`write_tls`] is invoked
/// until it is all written.
/// - Otherwise, if [`wants_read`] is true, [`read_tls`] is invoked
/// once.
///
/// The return value is the number of bytes read from and written
/// to `io`, respectively.
///
/// This function will block if `io` blocks.
///
/// Errors from TLS record handling (i.e., from [`process_new_packets`])
/// are wrapped in an `io::ErrorKind::InvalidData`-kind error.
///
/// [`is_handshaking`]: CommonState::is_handshaking
/// [`wants_read`]: CommonState::wants_read
/// [`wants_write`]: CommonState::wants_write
/// [`write_tls`]: ConnectionCommon::write_tls
/// [`read_tls`]: ConnectionCommon::read_tls
/// [`process_new_packets`]: ConnectionCommon::process_new_packets
pub fn complete_io<T>(&mut self, io: &mut T) -> Result<(usize, usize), io::Error>
where
Self: Sized,
T: io::Read + io::Write,
{
let mut eof = false;
let mut wrlen = 0;
let mut rdlen = 0;
loop {
let until_handshaked = self.is_handshaking();
if !self.wants_write() && !self.wants_read() {
// We will make no further progress.
return Ok((rdlen, wrlen));
}
while self.wants_write() {
match self.write_tls(io)? {
0 => {
io.flush()?;
return Ok((rdlen, wrlen)); // EOF.
}
n => wrlen += n,
}
}
io.flush()?;
if !until_handshaked && wrlen > 0 {
return Ok((rdlen, wrlen));
}
while !eof && self.wants_read() {
let read_size = match self.read_tls(io) {
Ok(0) => {
eof = true;
Some(0)
}
Ok(n) => {
rdlen += n;
Some(n)
}
Err(ref err) if err.kind() == io::ErrorKind::Interrupted => None, // nothing to do
Err(err) => return Err(err),
};
if read_size.is_some() {
break;
}
}
match self.process_new_packets() {
Ok(_) => {}
Err(e) => {
// In case we have an alert to send describing this error,
// try a last-gasp write -- but don't predate the primary
// error.
let _ignored = self.write_tls(io);
let _ignored = io.flush();
return Err(io::Error::new(io::ErrorKind::InvalidData, e));
}
};
// if we're doing IO until handshaked, and we believe we've finished handshaking,
// but process_new_packets() has queued TLS data to send, loop around again to write
// the queued messages.
if until_handshaked && !self.is_handshaking() && self.wants_write() {
continue;
}
match (eof, until_handshaked, self.is_handshaking()) {
(_, true, false) => return Ok((rdlen, wrlen)),
(_, false, _) => return Ok((rdlen, wrlen)),
(true, true, true) => return Err(io::Error::from(io::ErrorKind::UnexpectedEof)),
(..) => {}
}
}
}
/// Extract the first handshake message.
///
/// This is a shortcut to the `process_new_packets()` -> `process_msg()` ->
/// `process_handshake_messages()` path, specialized for the first handshake message.
pub(crate) fn first_handshake_message(&mut self) -> Result<Option<Message<'static>>, Error> {
let mut buffer_progress = self.core.hs_deframer.progress();
let res = self
.core
.deframe(
None,
self.deframer_buffer.filled_mut(),
&mut buffer_progress,
)
.map(|opt| opt.map(|pm| Message::try_from(pm).map(|m| m.into_owned())));
match res? {
Some(Ok(msg)) => {
self.deframer_buffer
.discard(buffer_progress.take_discard());
Ok(Some(msg))
}
Some(Err(err)) => Err(self.send_fatal_alert(AlertDescription::DecodeError, err)),
None => Ok(None),
}
}
pub(crate) fn replace_state(&mut self, new: Box<dyn State<Data>>) {
self.core.state = Ok(new);
}
/// Read TLS content from `rd` into the internal buffer.
///
/// Due to the internal buffering, `rd` can supply TLS messages in arbitrary-sized chunks (like
/// a socket or pipe might).
///
/// You should call [`process_new_packets()`] each time a call to this function succeeds in order
/// to empty the incoming TLS data buffer.
///
/// This function returns `Ok(0)` when the underlying `rd` does so. This typically happens when
/// a socket is cleanly closed, or a file is at EOF. Errors may result from the IO done through
/// `rd`; additionally, errors of `ErrorKind::Other` are emitted to signal backpressure:
///
/// * In order to empty the incoming TLS data buffer, you should call [`process_new_packets()`]
/// each time a call to this function succeeds.
/// * In order to empty the incoming plaintext data buffer, you should empty it through
/// the [`reader()`] after the call to [`process_new_packets()`].
///
/// This function also returns `Ok(0)` once a `close_notify` alert has been successfully
/// received. No additional data is ever read in this state.
///
/// [`process_new_packets()`]: ConnectionCommon::process_new_packets
/// [`reader()`]: ConnectionCommon::reader
pub fn read_tls(&mut self, rd: &mut dyn io::Read) -> Result<usize, io::Error> {
if self.received_plaintext.is_full() {
return Err(io::Error::new(
io::ErrorKind::Other,
"received plaintext buffer full",
));
}
if self.has_received_close_notify {
return Ok(0);
}
let res = self
.deframer_buffer
.read(rd, self.core.hs_deframer.is_active());
if let Ok(0) = res {
self.has_seen_eof = true;
}
res
}
/// Writes TLS messages to `wr`.
///
/// On success, this function returns `Ok(n)` where `n` is a number of bytes written to `wr`
/// (after encoding and encryption).
///
/// After this function returns, the connection buffer may not yet be fully flushed. The
/// [`CommonState::wants_write`] function can be used to check if the output buffer is empty.
pub fn write_tls(&mut self, wr: &mut dyn io::Write) -> Result<usize, io::Error> {
self.sendable_tls.write_to(wr)
}
}
impl<'a, Data> From<&'a mut ConnectionCommon<Data>> for Context<'a, Data> {
fn from(conn: &'a mut ConnectionCommon<Data>) -> Self {
Self {
common: &mut conn.core.common_state,
data: &mut conn.core.data,
sendable_plaintext: Some(&mut conn.sendable_plaintext),
}
}
}
impl<T> Deref for ConnectionCommon<T> {
type Target = CommonState;
fn deref(&self) -> &Self::Target {
&self.core.common_state
}
}
impl<T> DerefMut for ConnectionCommon<T> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.core.common_state
}
}
impl<Data> From<ConnectionCore<Data>> for ConnectionCommon<Data> {
fn from(core: ConnectionCore<Data>) -> Self {
Self {
core,
deframer_buffer: DeframerVecBuffer::default(),
sendable_plaintext: ChunkVecBuffer::new(Some(DEFAULT_BUFFER_LIMIT)),
}
}
}
/// Interface shared by unbuffered client and server connections.
pub struct UnbufferedConnectionCommon<Data> {
pub(crate) core: ConnectionCore<Data>,
wants_write: bool,
}
impl<Data> From<ConnectionCore<Data>> for UnbufferedConnectionCommon<Data> {
fn from(core: ConnectionCore<Data>) -> Self {
Self {
core,
wants_write: false,
}
}
}
impl<T> Deref for UnbufferedConnectionCommon<T> {
type Target = CommonState;
fn deref(&self) -> &Self::Target {
&self.core.common_state
}
}
pub(crate) struct ConnectionCore<Data> {
pub(crate) state: Result<Box<dyn State<Data>>, Error>,
pub(crate) data: Data,
pub(crate) common_state: CommonState,
pub(crate) hs_deframer: HandshakeDeframer,
/// We limit consecutive empty fragments to avoid a route for the peer to send
/// us significant but fruitless traffic.
seen_consecutive_empty_fragments: u8,
}
impl<Data> ConnectionCore<Data> {
pub(crate) fn new(state: Box<dyn State<Data>>, data: Data, common_state: CommonState) -> Self {
Self {
state: Ok(state),
data,
common_state,
hs_deframer: HandshakeDeframer::default(),
seen_consecutive_empty_fragments: 0,
}
}
pub(crate) fn process_new_packets(
&mut self,
deframer_buffer: &mut DeframerVecBuffer,
sendable_plaintext: &mut ChunkVecBuffer,
) -> Result<IoState, Error> {
let mut state = match mem::replace(&mut self.state, Err(Error::HandshakeNotComplete)) {
Ok(state) => state,
Err(e) => {
self.state = Err(e.clone());
return Err(e);
}
};
let mut buffer_progress = self.hs_deframer.progress();
loop {
let res = self.deframe(
Some(&*state),
deframer_buffer.filled_mut(),
&mut buffer_progress,
);
let opt_msg = match res {
Ok(opt_msg) => opt_msg,
Err(e) => {
self.state = Err(e.clone());
deframer_buffer.discard(buffer_progress.take_discard());
return Err(e);
}
};
let Some(msg) = opt_msg else {
break;
};
match self.process_msg(msg, state, Some(sendable_plaintext)) {
Ok(new) => state = new,
Err(e) => {
self.state = Err(e.clone());
deframer_buffer.discard(buffer_progress.take_discard());
return Err(e);
}
}
if self
.common_state
.has_received_close_notify
{
// "Any data received after a closure alert has been received MUST be ignored."
// -- <https://datatracker.ietf.org/doc/html/rfc8446#section-6.1>
// This is data that has already been accepted in `read_tls`.
buffer_progress.add_discard(deframer_buffer.filled().len());
break;
}
deframer_buffer.discard(buffer_progress.take_discard());
}
deframer_buffer.discard(buffer_progress.take_discard());
self.state = Ok(state);
Ok(self.common_state.current_io_state())
}
/// Pull a message out of the deframer and send any messages that need to be sent as a result.
fn deframe<'b>(
&mut self,
state: Option<&dyn State<Data>>,
buffer: &'b mut [u8],
buffer_progress: &mut BufferProgress,
) -> Result<Option<InboundPlainMessage<'b>>, Error> {
// before processing any more of `buffer`, return any extant messages from `hs_deframer`
if self.hs_deframer.has_message_ready() {
Ok(self.take_handshake_message(buffer, buffer_progress))
} else {
self.process_more_input(state, buffer, buffer_progress)
}
}
fn take_handshake_message<'b>(
&mut self,
buffer: &'b mut [u8],
buffer_progress: &mut BufferProgress,
) -> Option<InboundPlainMessage<'b>> {
self.hs_deframer
.iter(buffer)
.next()
.map(|(message, discard)| {
buffer_progress.add_discard(discard);
message
})
}
fn process_more_input<'b>(
&mut self,
state: Option<&dyn State<Data>>,
buffer: &'b mut [u8],
buffer_progress: &mut BufferProgress,
) -> Result<Option<InboundPlainMessage<'b>>, Error> {
let version_is_tls13 = matches!(
self.common_state.negotiated_version,
Some(ProtocolVersion::TLSv1_3)
);
let locator = Locator::new(buffer);
loop {
let mut iter = DeframerIter::new(&mut buffer[buffer_progress.processed()..]);
let (message, processed) = loop {
let message = match iter.next().transpose() {
Ok(Some(message)) => message,
Ok(None) => return Ok(None),
Err(err) => return Err(self.handle_deframe_error(err, state)),
};
let allowed_plaintext = match message.typ {
// CCS messages are always plaintext.
ContentType::ChangeCipherSpec => true,
// Alerts are allowed to be plaintext if-and-only-if:
// * The negotiated protocol version is TLS 1.3. - In TLS 1.2 it is unambiguous when
// keying changes based on the CCS message. Only TLS 1.3 requires these heuristics.
// * We have not yet decrypted any messages from the peer - if we have we don't
// expect any plaintext.
// * The payload size is indicative of a plaintext alert message.
ContentType::Alert
if version_is_tls13
&& !self
.common_state
.record_layer
.has_decrypted()
&& message.payload.len() <= 2 =>
{
true
}
// In other circumstances, we expect all messages to be encrypted.
_ => false,
};
if allowed_plaintext && !self.hs_deframer.is_active() {
break (message.into_plain_message(), iter.bytes_consumed());
}
let message = match self
.common_state
.record_layer
.decrypt_incoming(message)
{
// failed decryption during trial decryption is not allowed to be
// interleaved with partial handshake data.
Ok(None) if !self.hs_deframer.is_aligned() => {
return Err(
PeerMisbehaved::RejectedEarlyDataInterleavedWithHandshakeMessage.into(),
)
}
// failed decryption during trial decryption.
Ok(None) => continue,
Ok(Some(message)) => message,
Err(err) => return Err(self.handle_deframe_error(err, state)),
};
let Decrypted {
want_close_before_decrypt,
plaintext,
} = message;
if want_close_before_decrypt {
self.common_state.send_close_notify();
}
break (plaintext, iter.bytes_consumed());
};
if !self.hs_deframer.is_aligned() && message.typ != ContentType::Handshake {
// "Handshake messages MUST NOT be interleaved with other record
// types. That is, if a handshake message is split over two or more
// records, there MUST NOT be any other records between them."
// https://www.rfc-editor.org/rfc/rfc8446#section-5.1
return Err(PeerMisbehaved::MessageInterleavedWithHandshakeMessage.into());
}
match message.payload.len() {
0 => {
if self.seen_consecutive_empty_fragments
== ALLOWED_CONSECUTIVE_EMPTY_FRAGMENTS_MAX
{
return Err(PeerMisbehaved::TooManyEmptyFragments.into());
}
self.seen_consecutive_empty_fragments += 1;
}
_ => {
self.seen_consecutive_empty_fragments = 0;
}
};
buffer_progress.add_processed(processed);
// do an end-run around the borrow checker, converting `message` (containing
// a borrowed slice) to an unborrowed one (containing a `Range` into the
// same buffer). the reborrow happens inside the branch that returns the
// message.
//
// is fixed by -Zpolonius
// https://github.com/rust-lang/rfcs/blob/master/text/2094-nll.md#problem-case-3-conditional-control-flow-across-functions
let unborrowed = InboundUnborrowedMessage::unborrow(&locator, message);
if unborrowed.typ != ContentType::Handshake {
let message = unborrowed.reborrow(&Delocator::new(buffer));
buffer_progress.add_discard(processed);
return Ok(Some(message));
}
let message = unborrowed.reborrow(&Delocator::new(buffer));
self.hs_deframer
.input_message(message, &locator, buffer_progress.processed());
self.hs_deframer.coalesce(buffer)?;
self.common_state.aligned_handshake = self.hs_deframer.is_aligned();
if self.hs_deframer.has_message_ready() {
// trial decryption finishes with the first handshake message after it started.
self.common_state
.record_layer
.finish_trial_decryption();
return Ok(self.take_handshake_message(buffer, buffer_progress));
}
}
}
fn handle_deframe_error(&mut self, error: Error, state: Option<&dyn State<Data>>) -> Error {
match error {
error @ Error::InvalidMessage(_) => {
if self.common_state.is_quic() {
self.common_state.quic.alert = Some(AlertDescription::DecodeError);
error
} else {
self.common_state
.send_fatal_alert(AlertDescription::DecodeError, error)
}
}
Error::PeerSentOversizedRecord => self
.common_state
.send_fatal_alert(AlertDescription::RecordOverflow, error),
Error::DecryptError => {
if let Some(state) = state {
state.handle_decrypt_error();
}
self.common_state
.send_fatal_alert(AlertDescription::BadRecordMac, error)
}
error => error,
}
}
fn process_msg(
&mut self,
msg: InboundPlainMessage<'_>,
state: Box<dyn State<Data>>,
sendable_plaintext: Option<&mut ChunkVecBuffer>,
) -> Result<Box<dyn State<Data>>, Error> {
// Drop CCS messages during handshake in TLS1.3
if msg.typ == ContentType::ChangeCipherSpec
&& !self
.common_state
.may_receive_application_data
&& self.common_state.is_tls13()
{
if !msg.is_valid_ccs() {
// "An implementation which receives any other change_cipher_spec value or
// which receives a protected change_cipher_spec record MUST abort the
// handshake with an "unexpected_message" alert."
return Err(self.common_state.send_fatal_alert(
AlertDescription::UnexpectedMessage,
PeerMisbehaved::IllegalMiddleboxChangeCipherSpec,
));
}
self.common_state
.received_tls13_change_cipher_spec()?;
trace!("Dropping CCS");
return Ok(state);
}
// Now we can fully parse the message payload.
let msg = match Message::try_from(msg) {
Ok(msg) => msg,
Err(err) => {
return Err(self
.common_state
.send_fatal_alert(AlertDescription::DecodeError, err));
}
};
// For alerts, we have separate logic.
if let MessagePayload::Alert(alert) = &msg.payload {
self.common_state.process_alert(alert)?;
return Ok(state);
}
self.common_state
.process_main_protocol(msg, state, &mut self.data, sendable_plaintext)
}
pub(crate) fn export_keying_material<T: AsMut<[u8]>>(
&self,
mut output: T,
label: &[u8],
context: Option<&[u8]>,
) -> Result<T, Error> {
if output.as_mut().is_empty() {
return Err(Error::General(
"export_keying_material with zero-length output".into(),
));
}
match self.state.as_ref() {
Ok(st) => st
.export_keying_material(output.as_mut(), label, context)
.map(|_| output),
Err(e) => Err(e.clone()),
}
}
/// Trigger a `refresh_traffic_keys` if required by `CommonState`.
fn maybe_refresh_traffic_keys(&mut self) {
if mem::take(
&mut self
.common_state
.refresh_traffic_keys_pending,
) {
let _ = self.refresh_traffic_keys();
}
}
fn refresh_traffic_keys(&mut self) -> Result<(), Error> {
match &mut self.state {
Ok(st) => st.send_key_update_request(&mut self.common_state),
Err(e) => Err(e.clone()),
}
}
}
/// Data specific to the peer's side (client or server).
pub trait SideData: Debug {}
/// An InboundPlainMessage which does not borrow its payload, but
/// references a range that can later be borrowed.
struct InboundUnborrowedMessage {
typ: ContentType,
version: ProtocolVersion,
bounds: Range<usize>,
}
impl InboundUnborrowedMessage {
fn unborrow(locator: &Locator, msg: InboundPlainMessage<'_>) -> Self {
Self {
typ: msg.typ,
version: msg.version,
bounds: locator.locate(msg.payload),
}
}
fn reborrow<'b>(self, delocator: &Delocator<'b>) -> InboundPlainMessage<'b> {
InboundPlainMessage {
typ: self.typ,
version: self.version,
payload: delocator.slice_from_range(&self.bounds),
}
}
}
/// cf. BoringSSL's `kMaxEmptyRecords`
/// <https://github.com/google/boringssl/blob/dec5989b793c56ad4dd32173bd2d8595ca78b398/ssl/tls_record.cc#L124-L128>
const ALLOWED_CONSECUTIVE_EMPTY_FRAGMENTS_MAX: u8 = 32;