tokio/lib.rs
1#![allow(unknown_lints, unexpected_cfgs)]
2#![allow(
3 clippy::cognitive_complexity,
4 clippy::large_enum_variant,
5 clippy::module_inception,
6 clippy::needless_doctest_main
7)]
8#![warn(
9 missing_debug_implementations,
10 missing_docs,
11 rust_2018_idioms,
12 unreachable_pub
13)]
14#![deny(unused_must_use)]
15#![doc(test(
16 no_crate_inject,
17 attr(deny(warnings, rust_2018_idioms), allow(dead_code, unused_variables))
18))]
19#![cfg_attr(docsrs, feature(doc_cfg))]
20#![cfg_attr(docsrs, allow(unused_attributes))]
21#![cfg_attr(loom, allow(dead_code, unreachable_pub))]
22#![cfg_attr(windows, allow(rustdoc::broken_intra_doc_links))]
23
24//! A runtime for writing reliable network applications without compromising speed.
25//!
26//! Tokio is an event-driven, non-blocking I/O platform for writing asynchronous
27//! applications with the Rust programming language. At a high level, it
28//! provides a few major components:
29//!
30//! * Tools for [working with asynchronous tasks][tasks], including
31//! [synchronization primitives and channels][sync] and [timeouts, sleeps, and
32//! intervals][time].
33//! * APIs for [performing asynchronous I/O][io], including [TCP and UDP][net] sockets,
34//! [filesystem][fs] operations, and [process] and [signal] management.
35//! * A [runtime] for executing asynchronous code, including a task scheduler,
36//! an I/O driver backed by the operating system's event queue (`epoll`, `kqueue`,
37//! `IOCP`, etc...), and a high performance timer.
38//!
39//! Guide level documentation is found on the [website].
40//!
41//! [tasks]: #working-with-tasks
42//! [sync]: crate::sync
43//! [time]: crate::time
44//! [io]: #asynchronous-io
45//! [net]: crate::net
46//! [fs]: crate::fs
47//! [process]: crate::process
48//! [signal]: crate::signal
49//! [fs]: crate::fs
50//! [runtime]: crate::runtime
51//! [website]: https://tokio.rs/tokio/tutorial
52//!
53//! # A Tour of Tokio
54//!
55//! Tokio consists of a number of modules that provide a range of functionality
56//! essential for implementing asynchronous applications in Rust. In this
57//! section, we will take a brief tour of Tokio, summarizing the major APIs and
58//! their uses.
59//!
60//! The easiest way to get started is to enable all features. Do this by
61//! enabling the `full` feature flag:
62//!
63//! ```toml
64//! tokio = { version = "1", features = ["full"] }
65//! ```
66//!
67//! ### Authoring applications
68//!
69//! Tokio is great for writing applications and most users in this case shouldn't
70//! worry too much about what features they should pick. If you're unsure, we suggest
71//! going with `full` to ensure that you don't run into any road blocks while you're
72//! building your application.
73//!
74//! #### Example
75//!
76//! This example shows the quickest way to get started with Tokio.
77//!
78//! ```toml
79//! tokio = { version = "1", features = ["full"] }
80//! ```
81//!
82//! ### Authoring libraries
83//!
84//! As a library author your goal should be to provide the lightest weight crate
85//! that is based on Tokio. To achieve this you should ensure that you only enable
86//! the features you need. This allows users to pick up your crate without having
87//! to enable unnecessary features.
88//!
89//! #### Example
90//!
91//! This example shows how you may want to import features for a library that just
92//! needs to `tokio::spawn` and use a `TcpStream`.
93//!
94//! ```toml
95//! tokio = { version = "1", features = ["rt", "net"] }
96//! ```
97//!
98//! ## Working With Tasks
99//!
100//! Asynchronous programs in Rust are based around lightweight, non-blocking
101//! units of execution called [_tasks_][tasks]. The [`tokio::task`] module provides
102//! important tools for working with tasks:
103//!
104//! * The [`spawn`] function and [`JoinHandle`] type, for scheduling a new task
105//! on the Tokio runtime and awaiting the output of a spawned task, respectively,
106//! * Functions for [running blocking operations][blocking] in an asynchronous
107//! task context.
108//!
109//! The [`tokio::task`] module is present only when the "rt" feature flag
110//! is enabled.
111//!
112//! [tasks]: task/index.html#what-are-tasks
113//! [`tokio::task`]: crate::task
114//! [`spawn`]: crate::task::spawn()
115//! [`JoinHandle`]: crate::task::JoinHandle
116//! [blocking]: task/index.html#blocking-and-yielding
117//!
118//! The [`tokio::sync`] module contains synchronization primitives to use when
119//! needing to communicate or share data. These include:
120//!
121//! * channels ([`oneshot`], [`mpsc`], [`watch`], and [`broadcast`]), for sending values
122//! between tasks,
123//! * a non-blocking [`Mutex`], for controlling access to a shared, mutable
124//! value,
125//! * an asynchronous [`Barrier`] type, for multiple tasks to synchronize before
126//! beginning a computation.
127//!
128//! The `tokio::sync` module is present only when the "sync" feature flag is
129//! enabled.
130//!
131//! [`tokio::sync`]: crate::sync
132//! [`Mutex`]: crate::sync::Mutex
133//! [`Barrier`]: crate::sync::Barrier
134//! [`oneshot`]: crate::sync::oneshot
135//! [`mpsc`]: crate::sync::mpsc
136//! [`watch`]: crate::sync::watch
137//! [`broadcast`]: crate::sync::broadcast
138//!
139//! The [`tokio::time`] module provides utilities for tracking time and
140//! scheduling work. This includes functions for setting [timeouts][timeout] for
141//! tasks, [sleeping][sleep] work to run in the future, or [repeating an operation at an
142//! interval][interval].
143//!
144//! In order to use `tokio::time`, the "time" feature flag must be enabled.
145//!
146//! [`tokio::time`]: crate::time
147//! [sleep]: crate::time::sleep()
148//! [interval]: crate::time::interval()
149//! [timeout]: crate::time::timeout()
150//!
151//! Finally, Tokio provides a _runtime_ for executing asynchronous tasks. Most
152//! applications can use the [`#[tokio::main]`][main] macro to run their code on the
153//! Tokio runtime. However, this macro provides only basic configuration options. As
154//! an alternative, the [`tokio::runtime`] module provides more powerful APIs for configuring
155//! and managing runtimes. You should use that module if the `#[tokio::main]` macro doesn't
156//! provide the functionality you need.
157//!
158//! Using the runtime requires the "rt" or "rt-multi-thread" feature flags, to
159//! enable the current-thread [single-threaded scheduler][rt] and the [multi-thread
160//! scheduler][rt-multi-thread], respectively. See the [`runtime` module
161//! documentation][rt-features] for details. In addition, the "macros" feature
162//! flag enables the `#[tokio::main]` and `#[tokio::test]` attributes.
163//!
164//! [main]: attr.main.html
165//! [`tokio::runtime`]: crate::runtime
166//! [`Builder`]: crate::runtime::Builder
167//! [`Runtime`]: crate::runtime::Runtime
168//! [rt]: runtime/index.html#current-thread-scheduler
169//! [rt-multi-thread]: runtime/index.html#multi-thread-scheduler
170//! [rt-features]: runtime/index.html#runtime-scheduler
171//!
172//! ## CPU-bound tasks and blocking code
173//!
174//! Tokio is able to concurrently run many tasks on a few threads by repeatedly
175//! swapping the currently running task on each thread. However, this kind of
176//! swapping can only happen at `.await` points, so code that spends a long time
177//! without reaching an `.await` will prevent other tasks from running. To
178//! combat this, Tokio provides two kinds of threads: Core threads and blocking threads.
179//!
180//! The core threads are where all asynchronous code runs, and Tokio will by default
181//! spawn one for each CPU core. You can use the environment variable `TOKIO_WORKER_THREADS`
182//! to override the default value.
183//!
184//! The blocking threads are spawned on demand, can be used to run blocking code
185//! that would otherwise block other tasks from running and are kept alive when
186//! not used for a certain amount of time which can be configured with [`thread_keep_alive`].
187//! Since it is not possible for Tokio to swap out blocking tasks, like it
188//! can do with asynchronous code, the upper limit on the number of blocking
189//! threads is very large. These limits can be configured on the [`Builder`].
190//!
191//! To spawn a blocking task, you should use the [`spawn_blocking`] function.
192//!
193//! [`Builder`]: crate::runtime::Builder
194//! [`spawn_blocking`]: crate::task::spawn_blocking()
195//! [`thread_keep_alive`]: crate::runtime::Builder::thread_keep_alive()
196//!
197//! ```
198//! #[tokio::main]
199//! async fn main() {
200//! // This is running on a core thread.
201//!
202//! let blocking_task = tokio::task::spawn_blocking(|| {
203//! // This is running on a blocking thread.
204//! // Blocking here is ok.
205//! });
206//!
207//! // We can wait for the blocking task like this:
208//! // If the blocking task panics, the unwrap below will propagate the
209//! // panic.
210//! blocking_task.await.unwrap();
211//! }
212//! ```
213//!
214//! If your code is CPU-bound and you wish to limit the number of threads used
215//! to run it, you should use a separate thread pool dedicated to CPU bound tasks.
216//! For example, you could consider using the [rayon] library for CPU-bound
217//! tasks. It is also possible to create an extra Tokio runtime dedicated to
218//! CPU-bound tasks, but if you do this, you should be careful that the extra
219//! runtime runs _only_ CPU-bound tasks, as IO-bound tasks on that runtime
220//! will behave poorly.
221//!
222//! Hint: If using rayon, you can use a [`oneshot`] channel to send the result back
223//! to Tokio when the rayon task finishes.
224//!
225//! [rayon]: https://docs.rs/rayon
226//! [`oneshot`]: crate::sync::oneshot
227//!
228//! ## Asynchronous IO
229//!
230//! As well as scheduling and running tasks, Tokio provides everything you need
231//! to perform input and output asynchronously.
232//!
233//! The [`tokio::io`] module provides Tokio's asynchronous core I/O primitives,
234//! the [`AsyncRead`], [`AsyncWrite`], and [`AsyncBufRead`] traits. In addition,
235//! when the "io-util" feature flag is enabled, it also provides combinators and
236//! functions for working with these traits, forming as an asynchronous
237//! counterpart to [`std::io`].
238//!
239//! Tokio also includes APIs for performing various kinds of I/O and interacting
240//! with the operating system asynchronously. These include:
241//!
242//! * [`tokio::net`], which contains non-blocking versions of [TCP], [UDP], and
243//! [Unix Domain Sockets][UDS] (enabled by the "net" feature flag),
244//! * [`tokio::fs`], similar to [`std::fs`] but for performing filesystem I/O
245//! asynchronously (enabled by the "fs" feature flag),
246//! * [`tokio::signal`], for asynchronously handling Unix and Windows OS signals
247//! (enabled by the "signal" feature flag),
248//! * [`tokio::process`], for spawning and managing child processes (enabled by
249//! the "process" feature flag).
250//!
251//! [`tokio::io`]: crate::io
252//! [`AsyncRead`]: crate::io::AsyncRead
253//! [`AsyncWrite`]: crate::io::AsyncWrite
254//! [`AsyncBufRead`]: crate::io::AsyncBufRead
255//! [`std::io`]: std::io
256//! [`tokio::net`]: crate::net
257//! [TCP]: crate::net::tcp
258//! [UDP]: crate::net::UdpSocket
259//! [UDS]: crate::net::unix
260//! [`tokio::fs`]: crate::fs
261//! [`std::fs`]: std::fs
262//! [`tokio::signal`]: crate::signal
263//! [`tokio::process`]: crate::process
264//!
265//! # Examples
266//!
267//! A simple TCP echo server:
268//!
269//! ```no_run
270//! use tokio::net::TcpListener;
271//! use tokio::io::{AsyncReadExt, AsyncWriteExt};
272//!
273//! #[tokio::main]
274//! async fn main() -> Result<(), Box<dyn std::error::Error>> {
275//! let listener = TcpListener::bind("127.0.0.1:8080").await?;
276//!
277//! loop {
278//! let (mut socket, _) = listener.accept().await?;
279//!
280//! tokio::spawn(async move {
281//! let mut buf = [0; 1024];
282//!
283//! // In a loop, read data from the socket and write the data back.
284//! loop {
285//! let n = match socket.read(&mut buf).await {
286//! // socket closed
287//! Ok(n) if n == 0 => return,
288//! Ok(n) => n,
289//! Err(e) => {
290//! eprintln!("failed to read from socket; err = {:?}", e);
291//! return;
292//! }
293//! };
294//!
295//! // Write the data back
296//! if let Err(e) = socket.write_all(&buf[0..n]).await {
297//! eprintln!("failed to write to socket; err = {:?}", e);
298//! return;
299//! }
300//! }
301//! });
302//! }
303//! }
304//! ```
305//!
306//! ## Feature flags
307//!
308//! Tokio uses a set of [feature flags] to reduce the amount of compiled code. It
309//! is possible to just enable certain features over others. By default, Tokio
310//! does not enable any features but allows one to enable a subset for their use
311//! case. Below is a list of the available feature flags. You may also notice
312//! above each function, struct and trait there is listed one or more feature flags
313//! that are required for that item to be used. If you are new to Tokio it is
314//! recommended that you use the `full` feature flag which will enable all public APIs.
315//! Beware though that this will pull in many extra dependencies that you may not
316//! need.
317//!
318//! - `full`: Enables all features listed below except `test-util` and `tracing`.
319//! - `rt`: Enables `tokio::spawn`, the current-thread scheduler,
320//! and non-scheduler utilities.
321//! - `rt-multi-thread`: Enables the heavier, multi-threaded, work-stealing scheduler.
322//! - `io-util`: Enables the IO based `Ext` traits.
323//! - `io-std`: Enable `Stdout`, `Stdin` and `Stderr` types.
324//! - `net`: Enables `tokio::net` types such as `TcpStream`, `UnixStream` and
325//! `UdpSocket`, as well as (on Unix-like systems) `AsyncFd` and (on
326//! FreeBSD) `PollAio`.
327//! - `time`: Enables `tokio::time` types and allows the schedulers to enable
328//! the built in timer.
329//! - `process`: Enables `tokio::process` types.
330//! - `macros`: Enables `#[tokio::main]` and `#[tokio::test]` macros.
331//! - `sync`: Enables all `tokio::sync` types.
332//! - `signal`: Enables all `tokio::signal` types.
333//! - `fs`: Enables `tokio::fs` types.
334//! - `test-util`: Enables testing based infrastructure for the Tokio runtime.
335//! - `parking_lot`: As a potential optimization, use the `_parking_lot_` crate's
336//! synchronization primitives internally. Also, this
337//! dependency is necessary to construct some of our primitives
338//! in a `const` context. `MSRV` may increase according to the
339//! `_parking_lot_` release in use.
340//!
341//! _Note: `AsyncRead` and `AsyncWrite` traits do not require any features and are
342//! always available._
343//!
344//! ### Unstable features
345//!
346//! Some feature flags are only available when specifying the `tokio_unstable` flag:
347//!
348//! - `tracing`: Enables tracing events.
349//!
350//! Likewise, some parts of the API are only available with the same flag:
351//!
352//! - [`task::Builder`]
353//! - Some methods on [`task::JoinSet`]
354//! - [`runtime::RuntimeMetrics`]
355//! - [`runtime::Builder::on_task_spawn`]
356//! - [`runtime::Builder::on_task_terminate`]
357//! - [`runtime::Builder::unhandled_panic`]
358//! - [`runtime::TaskMeta`]
359//!
360//! This flag enables **unstable** features. The public API of these features
361//! may break in 1.x releases. To enable these features, the `--cfg
362//! tokio_unstable` argument must be passed to `rustc` when compiling. This
363//! serves to explicitly opt-in to features which may break semver conventions,
364//! since Cargo [does not yet directly support such opt-ins][unstable features].
365//!
366//! You can specify it in your project's `.cargo/config.toml` file:
367//!
368//! ```toml
369//! [build]
370//! rustflags = ["--cfg", "tokio_unstable"]
371//! ```
372//!
373//! <div class="warning">
374//! The <code>[build]</code> section does <strong>not</strong> go in a
375//! <code>Cargo.toml</code> file. Instead it must be placed in the Cargo config
376//! file <code>.cargo/config.toml</code>.
377//! </div>
378//!
379//! Alternatively, you can specify it with an environment variable:
380//!
381//! ```sh
382//! ## Many *nix shells:
383//! export RUSTFLAGS="--cfg tokio_unstable"
384//! cargo build
385//! ```
386//!
387//! ```powershell
388//! ## Windows PowerShell:
389//! $Env:RUSTFLAGS="--cfg tokio_unstable"
390//! cargo build
391//! ```
392//!
393//! [unstable features]: https://internals.rust-lang.org/t/feature-request-unstable-opt-in-non-transitive-crate-features/16193#why-not-a-crate-feature-2
394//! [feature flags]: https://doc.rust-lang.org/cargo/reference/manifest.html#the-features-section
395//!
396//! ## Supported platforms
397//!
398//! Tokio currently guarantees support for the following platforms:
399//!
400//! * Linux
401//! * Windows
402//! * Android (API level 21)
403//! * macOS
404//! * iOS
405//! * FreeBSD
406//!
407//! Tokio will continue to support these platforms in the future. However,
408//! future releases may change requirements such as the minimum required libc
409//! version on Linux, the API level on Android, or the supported FreeBSD
410//! release.
411//!
412//! Beyond the above platforms, Tokio is intended to work on all platforms
413//! supported by the mio crate. You can find a longer list [in mio's
414//! documentation][mio-supported]. However, these additional platforms may
415//! become unsupported in the future.
416//!
417//! Note that Wine is considered to be a different platform from Windows. See
418//! mio's documentation for more information on Wine support.
419//!
420//! [mio-supported]: https://crates.io/crates/mio#platforms
421//!
422//! ### `WASM` support
423//!
424//! Tokio has some limited support for the `WASM` platform. Without the
425//! `tokio_unstable` flag, the following features are supported:
426//!
427//! * `sync`
428//! * `macros`
429//! * `io-util`
430//! * `rt`
431//! * `time`
432//!
433//! Enabling any other feature (including `full`) will cause a compilation
434//! failure.
435//!
436//! The `time` module will only work on `WASM` platforms that have support for
437//! timers (e.g. wasm32-wasi). The timing functions will panic if used on a `WASM`
438//! platform that does not support timers.
439//!
440//! Note also that if the runtime becomes indefinitely idle, it will panic
441//! immediately instead of blocking forever. On platforms that don't support
442//! time, this means that the runtime can never be idle in any way.
443//!
444//! ### Unstable `WASM` support
445//!
446//! Tokio also has unstable support for some additional `WASM` features. This
447//! requires the use of the `tokio_unstable` flag.
448//!
449//! Using this flag enables the use of `tokio::net` on the wasm32-wasi target.
450//! However, not all methods are available on the networking types as `WASI`
451//! currently does not support the creation of new sockets from within `WASM`.
452//! Because of this, sockets must currently be created via the `FromRawFd`
453//! trait.
454
455// Test that pointer width is compatible. This asserts that e.g. usize is at
456// least 32 bits, which a lot of components in Tokio currently assumes.
457//
458// TODO: improve once we have MSRV access to const eval to make more flexible.
459#[cfg(not(any(target_pointer_width = "32", target_pointer_width = "64")))]
460compile_error! {
461 "Tokio requires the platform pointer width to be at least 32 bits"
462}
463
464#[cfg(all(
465 not(tokio_unstable),
466 target_family = "wasm",
467 any(
468 feature = "fs",
469 feature = "io-std",
470 feature = "net",
471 feature = "process",
472 feature = "rt-multi-thread",
473 feature = "signal"
474 )
475))]
476compile_error!("Only features sync,macros,io-util,rt,time are supported on wasm.");
477
478#[cfg(all(not(tokio_unstable), tokio_taskdump))]
479compile_error!("The `tokio_taskdump` feature requires `--cfg tokio_unstable`.");
480
481#[cfg(all(
482 tokio_taskdump,
483 not(doc),
484 not(all(
485 target_os = "linux",
486 any(target_arch = "aarch64", target_arch = "x86", target_arch = "x86_64")
487 ))
488))]
489compile_error!(
490 "The `tokio_taskdump` feature is only currently supported on \
491linux, on `aarch64`, `x86` and `x86_64`."
492);
493
494// Includes re-exports used by macros.
495//
496// This module is not intended to be part of the public API. In general, any
497// `doc(hidden)` code is not part of Tokio's public and stable API.
498#[macro_use]
499#[doc(hidden)]
500pub mod macros;
501
502cfg_fs! {
503 pub mod fs;
504}
505
506mod future;
507
508pub mod io;
509pub mod net;
510
511mod loom;
512
513cfg_process! {
514 pub mod process;
515}
516
517#[cfg(any(
518 feature = "fs",
519 feature = "io-std",
520 feature = "net",
521 all(windows, feature = "process"),
522))]
523mod blocking;
524
525cfg_rt! {
526 pub mod runtime;
527}
528cfg_not_rt! {
529 pub(crate) mod runtime;
530}
531
532cfg_signal! {
533 pub mod signal;
534}
535
536cfg_signal_internal! {
537 #[cfg(not(feature = "signal"))]
538 #[allow(dead_code)]
539 #[allow(unreachable_pub)]
540 pub(crate) mod signal;
541}
542
543cfg_sync! {
544 pub mod sync;
545}
546cfg_not_sync! {
547 mod sync;
548}
549
550pub mod task;
551cfg_rt! {
552 pub use task::spawn;
553}
554
555cfg_time! {
556 pub mod time;
557}
558
559mod trace {
560 use std::future::Future;
561 use std::pin::Pin;
562 use std::task::{Context, Poll};
563
564 cfg_taskdump! {
565 pub(crate) use crate::runtime::task::trace::trace_leaf;
566 }
567
568 cfg_not_taskdump! {
569 #[inline(always)]
570 #[allow(dead_code)]
571 pub(crate) fn trace_leaf(_: &mut std::task::Context<'_>) -> std::task::Poll<()> {
572 std::task::Poll::Ready(())
573 }
574 }
575
576 #[cfg_attr(not(feature = "sync"), allow(dead_code))]
577 pub(crate) fn async_trace_leaf() -> impl Future<Output = ()> {
578 struct Trace;
579
580 impl Future for Trace {
581 type Output = ();
582
583 #[inline(always)]
584 fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<()> {
585 trace_leaf(cx)
586 }
587 }
588
589 Trace
590 }
591}
592
593mod util;
594
595/// Due to the `Stream` trait's inclusion in `std` landing later than Tokio's 1.0
596/// release, most of the Tokio stream utilities have been moved into the [`tokio-stream`]
597/// crate.
598///
599/// # Why was `Stream` not included in Tokio 1.0?
600///
601/// Originally, we had planned to ship Tokio 1.0 with a stable `Stream` type
602/// but unfortunately the [RFC] had not been merged in time for `Stream` to
603/// reach `std` on a stable compiler in time for the 1.0 release of Tokio. For
604/// this reason, the team has decided to move all `Stream` based utilities to
605/// the [`tokio-stream`] crate. While this is not ideal, once `Stream` has made
606/// it into the standard library and the `MSRV` period has passed, we will implement
607/// stream for our different types.
608///
609/// While this may seem unfortunate, not all is lost as you can get much of the
610/// `Stream` support with `async/await` and `while let` loops. It is also possible
611/// to create a `impl Stream` from `async fn` using the [`async-stream`] crate.
612///
613/// [`tokio-stream`]: https://docs.rs/tokio-stream
614/// [`async-stream`]: https://docs.rs/async-stream
615/// [RFC]: https://github.com/rust-lang/rfcs/pull/2996
616///
617/// # Example
618///
619/// Convert a [`sync::mpsc::Receiver`] to an `impl Stream`.
620///
621/// ```rust,no_run
622/// use tokio::sync::mpsc;
623///
624/// let (tx, mut rx) = mpsc::channel::<usize>(16);
625///
626/// let stream = async_stream::stream! {
627/// while let Some(item) = rx.recv().await {
628/// yield item;
629/// }
630/// };
631/// ```
632pub mod stream {}
633
634// local re-exports of platform specific things, allowing for decent
635// documentation to be shimmed in on docs.rs
636
637#[cfg(all(docsrs, unix))]
638pub mod doc;
639
640#[cfg(any(feature = "net", feature = "fs"))]
641#[cfg(all(docsrs, unix))]
642#[allow(unused)]
643pub(crate) use self::doc::os;
644
645#[cfg(not(all(docsrs, unix)))]
646#[allow(unused)]
647pub(crate) use std::os;
648
649cfg_macros! {
650 /// Implementation detail of the `select!` macro. This macro is **not**
651 /// intended to be used as part of the public API and is permitted to
652 /// change.
653 #[doc(hidden)]
654 pub use tokio_macros::select_priv_declare_output_enum;
655
656 /// Implementation detail of the `select!` macro. This macro is **not**
657 /// intended to be used as part of the public API and is permitted to
658 /// change.
659 #[doc(hidden)]
660 pub use tokio_macros::select_priv_clean_pattern;
661
662 cfg_rt! {
663 #[cfg(feature = "rt-multi-thread")]
664 #[cfg_attr(docsrs, doc(cfg(feature = "macros")))]
665 #[doc(inline)]
666 pub use tokio_macros::main;
667
668 #[cfg(feature = "rt-multi-thread")]
669 #[cfg_attr(docsrs, doc(cfg(feature = "macros")))]
670 #[doc(inline)]
671 pub use tokio_macros::test;
672
673 cfg_not_rt_multi_thread! {
674 #[doc(inline)]
675 pub use tokio_macros::main_rt as main;
676
677 #[doc(inline)]
678 pub use tokio_macros::test_rt as test;
679 }
680 }
681
682 // Always fail if rt is not enabled.
683 cfg_not_rt! {
684 #[doc(inline)]
685 pub use tokio_macros::main_fail as main;
686
687 #[doc(inline)]
688 pub use tokio_macros::test_fail as test;
689 }
690}
691
692// TODO: rm
693#[cfg(feature = "io-util")]
694#[cfg(test)]
695fn is_unpin<T: Unpin>() {}
696
697/// fuzz test (`fuzz_linked_list`)
698#[cfg(fuzzing)]
699pub mod fuzz;